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Abstract. ComputerN-body experiments are desribed which More than three decades ago, Lindblad (1963, and earlier
testthe validities of the original Toomre’s (1964) criterion and a&ferences) proposed that spiral arms of a galaxy are quasi-
a generalized criterion for local stability of Jeans-type perturbstationary density waves propagating through differentially ro-
tions in a self-gravitating, infinitesimally thin, and practicallytating parts of a collisionless disk of stars with a constant phase
collisionless disk of stars. The fact that the nonaxisymmetrelocity. Subsequently, Lin & Shu (1966), Lin et al. (1969), Shu
perturbations in the differentially rotating system are more u(t970), and others (e.g., Nakamura et al. 1975) further devel-
stable than the axisymmetric ones is taken into account in tbised the density wave theory by studying collective effects in
generalized criterion. It is shown that for differentially rotatself-gravitating stellar systems; see reviews by Toomre (1974,
ing disks, the generalized criterion works as well as Toomrel977) and Athanassoula (1984). It seemed reasonable to at-
ordinary criterion does for rigidly rotating ones. tribute galactic spiral arms to Lin-Shu type small-wavelength

A modest discrepancy is observed between the analytidainsity waves driven by the classical Jeans instability in a
stability criteria and the numerical results. We tentatively atapidly rotating system of young, dynamically cold stars.
tribute this to the shortcomings of the asymptotic density wave Initially, in the asymptotic Lin-Shu density wave theory of
theory and possibly additional ones introduced by approxintaghtly-wound spirals, important effects of the azimuthal gravi-
tions in the local numerical code employed here. In additiotational forces in nonuniformly rotating systems were not prop-
the linear stability theory of small oscillations of a disk of starsrly taken into account. As a result of this simplification, the
is reexamined by using the method of particle orbit theory. Thigell-known Toomre’s (1964) local criterion for stability against
representation gives new insight into the problem of gravitatimaly axially symmetriqradial) Jeans-type perturbations of the
disk stability. Certain applications of the theory anddody gravitational potential can be derived from the original Lin-Shu-
simulations to actual disk-shaped spiral galaxies are explo#€alnajs dispersion relation (Lin & Shu 1966; Lin et al. 1969;
as well. Shu 1970; Toomre 197@).

The original Toomre’s criterion states that the radial residual
Key words: galaxies: kinematics and dynamics — galaxiegrandom)-velocity dispersion of stars, which is proportional
structure to the square root of the “temperature” of the system, will sup-
press the axisymmetric Jeans perturbations in the rapidly rotat-
ing, nearly homogeneous, and very thif? < R, wherehis a
typical thickness andk is a characteristic radius of the system)
disk, if
_ 3.4GO’0

Spirals are common in rapidly (and nonuniformly) rotatinﬁr = cer = ko @)

galaxigs. The origin and maintenance of the spiral _s'gructurelﬂqu_ (1),G is the gravitational constant ang is the equilib-
such highly flattened systems has proved to be a difficult prgf; surface mass density. The local epicyclic frequen@y)

lem in galactic dynamics. Even though no definitive answer can . _ 1/2 i
be given at the present time, the study of the stability of sm . 9lven by = 2021 + (r/20) (dS2/dr)] "~ where the quan

amplitude waves in disk-shaped galaxies of stars is the first s %Q(r) denotes the angular velocity of rotation at the distance

towards an understanding of the phenomena. This is becaus% i the galactic center. The epicyclic frequency decreases
Kk

the Milky Way Galaxy and many other giant galaxies the bu om 212 for the rigid body rotation t@ for the Keplerian one.

of the optical mass, probabﬁf 90%, is composed of stars, and * In plasma physics an instability of the Jeans type is known as
therefore stellar dynamical phenomena play a basic role. the negative-mass instability of a relativistic charged particle ring or

the diocotron instability of a nonrelativistic ring that caused azimuthal

Send offprint requestst®r. E. Griv at Beer-Sheva clumping of beams in synchrotrons, betatrons, and mirror machines
(griv@bgumail.bgu.ac.il) (Landau & Neil 1966; Nocentini et al. 1968; Davidson 1992).

1. Introduction

1.1. Local stability criterion
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The disk with the velocity dispersiaf} = ¢ is on the verge of rial at radius- is pulled forward by the azimuthal forces of the
the gravitational Jeans-type instability with respect to the shontaterial an- < r that it trails.
scale,< R, purely radial or ringlike perturbations only. The  Apparently, Toomre (1964, p. 1222) first noted the different
local criterion (1) gives a necessary condition for radial stabdlynamical properties of perturbations with differeftin the
ity. It does not obviously address the stability of nonaxisymmetenuniformly rotating stellar disk. Later the destabilizing effect
ric, relatively large-scale modes, R, particularly open spiral Of the azimuthal forces has been studied using an analysis based
modes in the bar form of the differentially rotatingf{/dr + 0) ~both on a gas dynamical model by Lau & Bertin (1978) and Lin
disks. & Lau (1979), and a stellar dynamical model by Bertin & Mark

In a series of papers Morozov (1980, 1981a, 1981b) €978) and Bertin (1980) by using an improved potential the-
tended the works of Toomre (1964), Lin & Shu (1966), Lin €?ry. They have explained the physical origin of the difference
al. (1969), and Shu (1970) by including the azimuthal forceldetween radial and spiral perturbations in a nonuniformly rotat-
It was demonstrated by Morozov that the presence of the dilg system, e.g., Lau & Bertin (1978, p. 509). Briefly, in order to
ferential rotation (or shear) results in quite different dynamic8t in with the gravitational field in flat systems, galactic rotation
properties of the axisymmetric and nonaxisymmetric (spird?gs to be differential and such shear hasimportantkinematic and
perturbations. A dispersion relation for arbitrary perturbatiofynamic consequences. They pointed out that the generalized
which propagate in the plane of a differentially rotating stellgtability criterion in the form of Eq. (2) takes properly into ac-
disk is derived using a kinetic approach. This generalized Liiount the combined influence of self-gravity, thermal motions,
Shu type dispersion relation leads to the following modifieghear, and azimuthal forces. The reader should consult Lau &

local stability criterion obtained by Morozov: Bertin (1978), Bertin (1980, 1994), and Lin & Bertin (1984) for
o a detailed discussion of the problem. Recently, the problem has
¢ > ey =or {1+ [(29/k)? — 1] sin® 1)} / , (2) been nicely reviewed by Polyachenko & Polyachenko (1997).

» . . . Note only that the free kinetic energy associated with the dif-
where the conditioa2/« > 1 always holds inthe differentially forential rotation of the system under study is only one possible
rotating system. In flat galaxies, source for the growth of the energy of these spiral Jeans-type
(20/k)? — 1 ~ —(r/20)(dQ/dr), pertgrbations, and appears to be released when angular momen-

tum is transferred outward.
[(r/2Q)(dQ/dr)| < 1, andd§Y/dr < 0. The pitch angle) As one can see from Eq. (2), the modified critical velocity
between the direction of the wave front and the tangent diispersiorc,,; grows withiy). Consequently, in order to suppress
the circular orbit of a star in Eq. (2) i = arctar{m/k,r), the most “dangerous,” in the sense of the loss of gravitational
where the nonnegative azimuthal mode numbes the num-  stability, nonaxisymmetric perturbations in aform of a har{
ber of spiral arms, whilé:, and k, = m/r are the radial 90°), ¢, should obey the following generalized criterion:
and the azimuthal wavenumbers, respectively. The parameter 20)
{1+ [(2Q/r)* —1] sian}U2 is an additional stability pa- ¢ = €6 = ~~¢T" (3)
K

rameter which depends on both the pitch angle and the amogiie should keep in mind that Eq. (3) is clearly only an approxi-
of differential rotation in the galaxy (cf. the paramef@intro- mate one, since it was obtained in the framework of the moder-
duced by Lau & Bertin 1978, Lin & Lau 1979, and Bertin 1980atey tightly-wound Lin-Shu perturbations approximation (Lin
1994). & Lau 1979; Griv 1996; Griv & Peter 1996). Strictly speaking,

It is clear from the modified criterion (2) that in a nonunithe above expression (2) foy cannot be used when the pitch

formly rotating disk, namely whe®(2/x > 1, for nonaxisym- angle is large, since in the asymptotic theory it is necessarily
metric perturbationsy{ # 0) the modified velocity dispersion gssumed that

cp Oof a marginally Jeans-stable system is larger tharfal- 9

though still of the order of7). Moreover, Morozov took into 21 ¥ < 1. 4)
account the additional weak destabilizing effect of a densifjhe condition (4) limits the analysis of the actual lewgalax-
inhomogeneity, and stabilizing effects of a radial gradient ofias (in the standard Fourier analysis of the azimuthal coordi-
velocity dispersion and of a finite disk’s thickness. The resultigte) withm < 5-7 to a consideration of disturbances with a
that these effects practically cancel out each other, at least inpliteh angle smaller than abot® only (Lin & Lau 1979; Griv
solar vicinity of our own Galaxy. In the present study, we ther& Peter 1996). Such a requirement naturally arises within the
fore neglect these small corrections. In addition to Morozow&/KB approximation we are interesting. Polyachenko (1989)
studies, Griv (1992) has obtained a value of critical dispersiondad Polyachenko & Polyachenko (1997) tried to find a stability
the next leading order in the asymptotic expansion by includiegterion for arbitrary localized perturbations beyond the limita-
higher-order terms in the epicyclic amplitude. Recently, Griion of the WKB approximation by considering a hydrodynam-
(1996) and Griv & Peter (1996) clarified the basic assumptioital model. Note, however, for the disk with flat rotation curve
of the asymptotic approximation and rederived the criterion (8) least, Polyachenko’s marginal stability condition and (3) are
by using the kinetic approach. A relationship exists betwegnactically coincidental.

Eqg. (2) and what Toomre (Toomre 1981; Binney & Tremaine Although the expression (2) only indicates the tendency of
1987, p. 375) called “swing amplification” in which the mategrowth of the critical dispersion with increasitigit is clear that



E. Griv et al.: Local stability criterion for a gravitating disk of stars 823

the generalized criterion for the local stability of a stellar disk.2. Physics motivation
against arbitrary Jeans-type perturbations (including the mgst , . L .
unstable barlike ones) should be approximately of the form 0 € value of Toomre's stability parameteis critically im-

Eq. (3). Inthis case, in a Jeans-stable differentially rotating di&ortant for any gravitational theory of spiral structure in galax-

the widely used Toomre (1964, 1977) critical stability pararrlf‘S (and_ for dyna_mlcs of planetary r|ng,s). T_h_e generalized lo-
: : . cal stability criterion as well as Toomre’s critic@-value has
eter (which guarantees the suppression of arbitrary Jeans-t

. . . . . ..Eggn discussed at length by Morozov (1980, 1981a, 1981b
perturbations in a rapidly rotating disk by the thermal Velocmeﬁolyachenko (1989) ar?d regently by GriE/ (199’6) Griv,& Peter)’

of stars) (1996), and Polyachenko & Polyachenko (1997). Surprisingly,
Qurit = Cerit (5) their ideas on the generalized local stability criterion have not
erit cr’ attracted a great deal of attention, and other explanations were

involved to confront the observations aidbody simulations.
greater than 1 and equal to ab@@t/x. (Toomre’sQ-value is . or Instance, Berpr} & Romeo (1988) mvoked the deStab'“Z'
ing effect of a sufficient amount of cold interstellar material to

a measure of the ratio of thermal and rotational stabilization .

- . ' : ) ._explain the observed large value of the paramétdor NGC
self-gravitation and is defined below.) In particular, in agrawtai—88 Although this explanation can be accepted for the gas-rich
ing system with the Keplerian rotatio(¢/x = 2), Toomre's '

critical parameter i€)., ~ 2. In the case of the flat rotationgalaXies’ it certainly cannot be universal. For example, Cinzano
Cri ~ .

) & van der Marel (1994) showed that even in such a gas-poor
curve2Q)/k = /2 and hence)..;; ~ v/2 also. According to _ . ) : >
Egs. (2), (3), and (5), the value of Toomre’s critical stability pas_p|ral galaxy like NGC 2974, sometimes classified as E4the

; . .~ value considerably exceeds unity, and probably is larger than 3.
rameter becomeg;c = 1 only for arbitrary perturbations in The problem seemed so complicated that Bottema (1993) even
the rigidly rotating disk 22/« = 1) and/or for axisymmetric P P

perturbations in the differentially rotating one (Bertin & Markclaims that it is very difficult to relate the pure observational
1978: Lau & Bertin 1978) results, that) between 2 and% over a large range of galactic

disks, to any existing theoretical concpt.

It is obvious that in differentially rotating galaxies, disks ; . -

. . .. Recently, the dynamical behavior of weakly collisional,

manage to keep their local stability parameter close to the C”}énetar finas svstem has been studied via\abody sim-
ical value,Qqit ~ 2Q/k ~ 2 0rc. = (2Q/K)er = 2c7, P y 1ings sy Y

respectively. In this case, once the entire differentially rotati ylation (Osterbart & Willerding 1995; Salo 1992, 1995). It was

disk has been heated to valugs 2¢7, no further spiral waves 8und that the stability numbé&p of Toomre in relaxed equilib-

can be sustained by virtue of the Jeans instability — unless Sonu(gn disks does not fall below a critical value, which lies about

“cooling” mechanism is available leading to Toomr€svalue erit = 2-2.5. No adequate explanation of the latter fact has
9 9 " been presented. (Interestingly, observational data on the Satur-
Cr
Q =

wherec.,;; is the critical radial-velocity dispersion, must b

nian rings system, obtained with the Voyager 2 spacecraft, have
cr indicated about the same value@@fx 2 for the densest B ring;
Lane et al. 1982, p. 543.)
We conclude that even though the criterion for local stability
a gravitating, rapidly rotating particulate disk is a relatively
Idissue in galactic and planetary rings dynamics, itis necessary

under approximately 2 or to the valuefsmaller than approx-
imately2cr, respectively (e.g., by the dissipation in the gas a ﬁi
accretion, and/or by the star formation in a “cold” interstel-

lar medium). By usingV-body simulations, first Hohl (1971) 0 address the problem again. In the present work, we turn to

and then, e.g., Sellwood & Carlberg (1984) and Griv & Chiuei}udies of localized gravity perturbations by using bittody

(1998) i’ have already showq that the process of for mation of N&hulations and an analytical approach. The linear disk’s sta-
dynamically cold stars, which move on nearly circular orbit

: . . : AT %ility theory is reexamined and conditions which guarantee the
plays a vital role in prolonging spiral activity in the plane of th

fack of all - table perturbations in a disk of
disk by reducing the random velocity dispersion of the entiralC of all Jeans-type unstable perturbations in a disk of stars

; L . 'WFee-dimensional motion will be investigated in a forthcoming
ically cold stars. In Saturn’s rings such a cooling mechanis

is also operating: inelastic physical collisions between particles The main objective of the currentwork is to check the gener-

reduce the magnitude of the relative velocity of partla&lo alized local stability criterion (3) numerically using the method

(1992) already investigated numerically the role of the ‘]ea6'1sdirect many-body simulations. Moreover, the dispersion rela-

instability mechanism in long-lived sculpting of Saturn’s ringﬁons (9) and (20) of Morozov (1980) and Griv & Peter (1996)
by including inelastic (dissipative) interparticle impacts. ’

% Jog (1996) obtained the criterion for local stability against gravity
perturbations in gravitationally coupled stars and gas in a galactic disk

2 Common dynamical processes act in the stellar disks of flat galdoy-treating the stars and gas as two isothermal fluids. Again, the stability
ies and in a planetary rings system of mutual-gravitating particle$ a disk only with respect to axisymmetric perturbations has been
(Tremaine 1989). studied.
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respectively, and the stability criterion (3) obtained in the frampendix A.3 we check if the system is being correctly modeled
work of the linear kinetic theory do not reveal what kind of struas a collisionless Boltzmann (Vlasov) system.
ture can emerge due to the gravitational instability. Simulations
should be able to identify these structures. As is thought, a veyy
simple model should be taken in the numerical work to comparée
the analytical stability criterion with the one obtained numerSimulations of galaxies of stars can be divided into two basic cat-
cally (see the next section of the paper). In addition, for the saggories: global and local. The former have been done to simulate
of completeness in Appendix A.1 of the current paper the lodhle global dynamics and the development of large-scale spiral
stability criteria (2) and (3) are rederived by employing the Land bending structures (Hohl 1971, 1972, 1978; Sellwood &
grangian formalism of magnetized plasma theory which de&sarlberg 1984; Grivnev 1985; Peter et al. 1993; Griv & Chiueh
with similar problems. In our theory, the simplest theoreticdl998). Certainly, some aspects of dynamical behavior of stellar
method of plasma physics is used. This is the so-called metlaydtems can be studied by global simulations only (nonlinear
of particle dynamics (or particle orbit theory) in which the moeffects, etc.). An obvious shortcoming of the global simulation
tion of an “average” star-“particle” is considered (Rosenblutiipproach is that the numbers of stars in a simulation is orders
& Longmire 1957; Alexandrov et al. 1984, p. 46). The essentiaf magnitude smaller than in a typical galaxy. This might not
part of the method is to regapdrq as a small parameter and tqpermit revelation of the small-scate p spiral structure (see
expand the solution in terms of it, whesés the mean epicyclic Appendix A.1 of the present paper). Here: ¢,/ is the mean
radius of the star ang) is the epicyclic center (the guiding centeepicyclic (Coriolis) radius (Larmor radius in magnetized plas-
in plasma physics) displacement from the galactic center. mas, respectively). As arule, in spiral galaxies 0.5 kpc, and
Occasionally doubts have been raised about the vaIidity/QR handp < R.

strictly two-dimensionalV-body simulations of stellar disks of  On the other hand, to study some aspects of particulate disk
galaxies (White 1988; Romeo 1997). For example, White (198§)namics when inhomogeneity is relatively weak, a different
found a few computer models in the exactly planar SimU'atiOﬂamericm approach may be taken: |0Mbody simulations.
which are probably affected by noise and two-body relaxatiqme latter galactiaV-body experiments in a local or Hill's ap-
(see, however, Hohl 1973). The physical effect of relaxatigtoximation has been pioneered by Toomre (1990) and Toomre
in the N-body simulations is to generate viscosity and hegt Kalnajs (1991). In these simulations dynamics of particles
conduction. One obvious effect of short-term relaxation isja small regions of the disk are assumed to be statistically in-
heating of the disk, and therefore some of the two-dimensiorgipendent of dynamics of particles in other regions. The local
N-body simulations probably cannot be trusted (White 198§ umerical model thus simulates only a small part of the system
We show, however, in Appendix A.2 of the present work thaihd more distant parts are represented as copies of the simulated
in general the effect of such rare, < Q, say,v. ~ 0.012, region. Wisdom & Tremaine (1988) applied the same numeri-
elastic gravitational collisions (encounters) is very small, ang| technique in studying the equilibrium properties of planetary
may be important only on a timescale of the order of the megRgs. In addition, Salo (1992, 1995) and Griv (1997) studied the
time of many galactic rotations, typicalty 100 rotations. Here dynamical behavior of collisional self-gravitating rings systems
v. is the effective frequency of interparticle collisions. Thusy using the same method. In contrast to global simulations, in
two-body relaxation effects in sucN-body models probably |ocal ones complicated effects of disk inhomogeneity and finite
donotyield any interesting physics on atimescale of severalfiffckness may be studied separately. This is the main reason
rotations when the gravity perturbation may be already large\gRy in the present work the local-body simulations are used.
a result of Jeans instability, i.e., in Weakly collisional systemsg our opinion7 this Simp|e model is useful for C|arifying the
with v. < Q) the collective effects may be apparent before thghysics of the phenomenon, and provides us with results which
collisional timescale is reached. can serve as a convenient starting point for more complicated
In Appendix A.3 of the present paper, following Rybickiheory and numerical simulations.
(1971) and Hohl (1973), we shall use an experimental method |n fact, Morozov (1981a) has already attempted to confirm
of testing a computational procedure by repeating calculatiog criterion (3) numerically. However, because of the very small
using a mass Spectrum. The latter would clearly show Wheth}ﬁfmber of model starsy = 200, Morozov's results are sub-
computations are sensitive to the undesirable particle relaxatjggt to considerable uncertainties, and additional simulations are
effects. clearly required to settle the issue. Furthermore, for that number
The organization of the paper is as follows. In Sect. 2 thg particles, the two-body relaxation timescale is comparable to
details of the numerical simulation model are discussed. T crossing time, even with Morozov's modest softening pa-
results of computer simulations are shown in Sect. 3 and COfmeter, raising some question about the app||cab|||ty of his
pared with the predictions of the basic theory as outlined §imulations to actual almost collisionless galaxies. Increasing
Appendix A.1. Sect. 4 is devoted to a discussion of the principle number density of model stars is definitely a more reliable
results of the work and their application to observational dajgrocedure. This paper presents the results of such simulations.
Through Appendix A.2 the effect of interparticle encounters on  Since Chandrasekhar’s (1960) fundamental “molecular-
the dispersion law of Jeans perturbations is estimated. In A@netic” studies, in stellar systems such as the solar vicinity
of our own Galaxy, binary star-star encounters are well recog-

Numerical experiments: descriptions
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nized to have no influence on the evolution. That is, if other ) N ri — Tj

perturbations were absent the motion of a star in its orbit in the = —G Z [(r; — )2 + 12, J3/2

regular gravitational field of a galaxy would be determined at g eut

every moment of time by the initial conditions that prevailewherer; is the position of the-th particle,r; is the position
when the star was “boril"Thus, in sufficiently dynamically of the j-th particle, andn is the mass of a particle. The cut-
hot and rarefied stellar systems of flat galaxies interparticle c8ff radiusr., of the potential was introduced in order to avoid
lisions can be neglected on the timescale of inte¥es00Q) !, numerical difficulties gaused py rare very close encounters be-
where in galaxie§® ! ~ 10° yr. Then, the equations of motionfween the model particles. This “softening” parameter reduces

for an individual star of unit mass in the inertial frame with thg1e interaction at shprt ranges an_d puts a lower limit on the size
origin at the disk center have the form (Chandrasekhar 19@(5,the model stars, i.e., the stars in the system can no longer be

chap. 3): considered as point-masses — they are in fact Plummer spheres
with a scale size,.. In addition, a sufficiently high value of
d?r 5 0%y 09 reus Makes the two-dimensional system a “collisionless” one
a2 (@) - or  or’ ©) (see below). Of course, the linearized equations of motion (9)
d, 5. 0Py 09, and (10) are valid only ifz| < ro. Such equations do not allow
%(T ¥) = 9o O ™ for investigation of nonlinear effects, the such as the well-known

o i L . . (in plasma physics) quasilinear collective-type relaxation.
where thep indicates time derivatives qf with respect to time. The system of equations of motion (9)-(10) fSridentical
Here and below:, ¢, and > are the galactocentric cylindrical, icles was integrated by the standard Runge-Kutta method
coordinates and the axis of the galactic rotation is alonghen ihe fourth order. A rotating Cartesian coordinate system with

axis. Inthe equations above, the gravitational potential has b%‘i’@in at the reference positiony was chosen, the axis point-
divided into the smoothed pat, (r) satisfying the equilibrium " radially outward, and the axis pointing in the direction

condition of the rotation (for details see Toomre 1990 and Salo 1995).
0%y 02 8 The particles were initially placed on nearly circular orbits with
or TR (8) an anisotropic Schwarzschild distribution of small radial and

. . . azimuthal random velocities components. The last statement
and the fluctuating small perturbatidn (r, £) with |8, /®o| < means that according to the set of equations (16) and (17) of

1 fOLaILr agdt. tioned. the local simulation has b d Appendix A.1, the ratio of the velocity dispersions in the az-

s has been mentioned, the loca’ simutation nas been AeYEr 5| and the radial directions (in the rotating frame we are
oped by Wisdom & Tremaine (1988), Toomre (1990), ToomrLTsing) is given by (Spitzer & Schwarzschild 1953)
& Kalnajs (1991), and Salo (1992, 1995). Following them, le .

us assume that the radial extent of any region of interest is much= "
smaller than its distance from the center of rotation and any rél- 20

ative motion is only a small fraction of the full rotation velocity, MiS IS close to that observed in the solar vicinity of the Galaxy.

In such a model, the linearized Newtonean Egs. (6) and (7)Imconformitywith observations we set the Gaussian distribution
Hill's approximation can be rewritten in the suitable form: of small random velocities along each coordinate in momentum

space both in the theory and in the numerical experiments. Thus,

d’z 10A 90) dy I3 9 equilibrium is established in a simple manner in such disks, i.e.,

az 0r T sy T T ©) s governed mainly by the balance between the centrifugal
d?y dx and gravitational forces. It is this metaequilibrium that is to be
a2 + 29% = — Ly, (10)  examined for stability by local simulations.

The initial distribution of starsa;, y;) was generated by
means of pseudo-random number generator placing particles
uniformly in the box in real space. The box should be thought
of as being embedded in a galactic disk which has a constant
ro is the reference radiusf? = Q(rg), and Ay = angularvelocity gradientin thedirection, thatis, the velocities
—(ro/2)(d2/dr)o is the first Oort constant of the differentialobey initially a linear shear profile, the stationary solutipn =
rotation which is ameasure of the shear strength. In actual galéx;, v; , = —2Aox; + 0, ,, whereg, , andy; ,, are the random
ies0 < Ap < (3/4)Q2 and typically Ag ~ 0.5€2. In general, velocities in thez-direction andy-direction, respectively. To
—F, and—F, are the forces due to interactions with other starsaintain the system under the shearing stress in a steady state,
The gravitational forces are the cyclic boundary conditions are used in the form suggested by

7 : _ _ Wisdom & Tremaine (1988) and Salo (19&9\ star leaving
On the other side, the modern observational data convincely in-

dicate the presence of a strong perturbative mechanism disturbing tie The “sliding brick” technique of Wisdom & Tremaine (1988),
stellar orbits; see Binney & Tremaine (1987, p. 470) as a review of tlieomre (1990), Toomre & Kalnajs (1991), and Salo (1995) has been
problem. The majority of the experts in the field is yield to the opinionsed in the past to simulate transport properties of simple fluids under
that this dynamical relaxation may be explained naturally by collectitiee action of a strong shearing force (Lees & Edwards 1972; Evans &
interactions of stars with unstable density waves. Morriss 1984).

In the equations above,

r=7r—To, y:T'()(QD*Qt%
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the computational domain at one side will enter again at tfE971) has already been pointed out that fortunately numerical
opposite side with the suitable velocity components. calculations are themselves subject to further approximations,
In all the experiments reported in this paper, we have takand a discretization effect minimizes the difficulty with relax-
the box to be rectangulaf,, x L, = Ay x Ay, 4\; x 6A;, ation time. Indeed, in contrast to the three-dimensional case
5A; X BAy or 6A; x 8\;, where\; = 4n2Goy/k? is the (Eq.[11]), there is no Newton’s logarithm in the expression
ordinary Jeans-Toomre radial wavelength (Toomre 1964, 199()2) for the relaxation time via the binary encounters in a two-
The direction of the disk rotation was taken to be clockwise adimensional system. On the other hand, in a two-dimensional
units are such th&tm? = 1. Timet = 1 corresponds to a singlesystem, encounters with small impact parameters play the main
revolution of the disk, and the orbital period4s,;, = 27/Q. role for collisional relaxationy o ¢; consequently, in two-
All the particles move with the same constant Runge-Kutta tindémensional systems there is no problem with the maximum
stepAT = 0.0017,,1. We did not included any artificial extraimpact parameter (in plasma physics the upper limit is the De-
damping force on the right side in Egs. (9) and (10) suggesteye radius). It is natural therefore to set= r., in Eq. (12)
by Toomre (1990) to reduce the computational time. [Grivhev 1985]. Clearly, by choosing a sufficiently large value
In our simulations (within the local simulation technique)of 4, one can construct a two-dimensional model which is prac-
a particle at ¢, y) has images at(+ IL,, y + p2AoL,Qt + tically collisionless on the timescale of interest.
sL,), wheret is the time and the values &f s, andp were It is very important to realize that the numerical model
chosento be equal 1 (Wisdom & Tremaine 1988; Toomre 1996§.a galaxy should properly simulate almasilisionlesssys-
Gravitational forces on a given target particle are calculatégins. According to Eq. (12), a way to achieve this in a two-
from all the other particles whose nearest image lies withitimensional system is to reduce the gravitational attraction at
the distance .« < % min{L,, L,} (Salo 1995, Fig. 1 in his short distances so that the relaxation times> T,,,. Other-
paper). Then, more distant imaggs |s|, and|p| > 1 do not wise, as it was shown by Griv & Peter (1996), Griv & Chiueh
contribute to gravitational forces. (1996), Griv & Yuan (1996), and Griv et al. (1997a) in a disk
Within the simple molecular-kinetic theory by Chanwith frequent collisions, in which-Q) < 1, another secular
drasekhar (1960, chap. 2), the classical collisional relaxatidissipative-type instability may develop effectively. This dissi-
time for a three-dimensional system, pative instability may produce structures completely unrelated
3 to the effects we would like to model (e.g., Sterzik et al. 1995).
TR G (11) _ Eq. (1_2) indic_ates thatpgrtwo-dimensionl‘é#body system
U will remain practically collisionless for more than several rev-
should be replaced by the collisional relaxation time in a twelutions, ifc, > 0.2cy, § = rcye > 0.03A 7, andN > 2000.
dimensional system (Rybicki 1971; Hohl 1973; Grivnev 1985)n this case, in the lowest approximation one does not need to
35 include the effect of interparticle collisions in the calculation of
TR . (12) the accelerations on the right-hand sides of Egs. (9) and (10).
G myng Below we describe the results of simulations of different com-

Herec is the averaged velocity dispersidris the minimum im- puter models containing a sufficiently large number of particles
pact parametery s is the mass of a field particle, ang is the NV = 2400-6480 (and withc > 0.2cr).
two-dimensional (Eq. [12]) or the three-dimensional (Eq.[11]) The value of-,; was chosento bi&03\;, butthe results are
number density of field particles. Al$o A is the so-called New- not sensitive to the choice of.; in the rangg0.005-0.05) ;.
ton’s (or Coulomb’s in plasmas) logarithm, by means of whicfiNote that such a value of,.; does not suppress the axisymmet-
the long-range nature of the gravitational force is taken infts Jeans instability if random motions are completely absent;
account. In galaxiem A ~ In N, and N is the total number see Toomre 1990 for an explanation.) We did not find any de-
of field particles (Binney & Tremaine 1987, pp. 187 and 420pendence of critical stability criterion on the amplitude of the
Theis (1998) has presented semi-analytical calculations for §fgoothing parameter (in the rangg: = 0.005-0.05) as ad-
two-body relaxation in softened potentials based on a Plumny@gated recently by Romeo (1997).
mass distribution and compared these calculationsMittody Summarizing, similar to actual galaxies of stars our model
simulations. It has been shown that with respect to a Keplerigna collisionless one to a good approximation at least on a
potential the increase of the relaxation time given by Eq. (11)tinescale of severdl,,.
the modified potentials is generally less than one order of mag- In all the experiments the simulation had been performed
nitude, typically only between 2 and 5, if the softening lengthP to a timet = 3, but we shall present snapshots for times
is of the order of the mean interparticle distance. Consequently< 1 only, since after the first rotation the system is always
we expect that the expressions (]_]_) and (12) for the time Sjﬁ.bl“zed and no further rapid evolution is visually detectable.
two-body relaxation in the case of the softenend potential W¢e performed a few runs for systems containi¥ig= 20 000
are using, are correct at least to the order of magnitude. ~ model stars and for smaller systems containing évily- 2000

In contrast to three-dimensional models, the collisional reénes. It was found that the results obtained for those systems
laxation time for exactly two-dimensional computer modeRre qualitatively indistinguishable: we did not detect in our ex-
being calculated from Eq. (12) is very short, of the same d?eriments any dependence of the typex N~!/2, whereR
der as the rotation period (Ryb|ck| 1971) However, Ryb|ck$ the amplitude of the density variations. The last is Clearly
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inconsiste_nt with T(_)omre_’s (1990) hypothe_sis that the spi_ral YRy ' R
observed in local simulations can be explained by the SwinOR:Sgk A= a6
amplified particle noise (“spiral chaos in an orbiting patch” o-ff
“kaleidoscope of chaotic arm features” which are response33 .
the random density irregularities orbiting within the particulatg }
disk). In the following discussion we advocate a way to de-
scribe the rapidly evolving structures, such as those reported1
the simulations (Sect. 3), in terms of local true instabilities & =
Jeans-type perturbations.

We claim that our numerical results are insensitive to the"¥

value of NV at least in the rang2000—20 000 and therefore two- 5,.3} P
body relaxation effects are not important. Also we did not final _"4'-(&}‘-‘7.1 -
any difference between the results of simulations with or withoygg4 , *‘.‘;’,f“-’"-‘
applying the so-called quiet starts procedure to select the initigh sz
coordinates of particles. The methods of quiet starts were de
veloped first in plasma simulations by Byers & Grewal (1970).
Basically, by applying the method of quiet starts, one uses n >
random numbers in the initial conditions to suppress the noise t=0.2
level in a system. Such techniques have proven useful in ol T
taining realistic noise levels without the use of a large numbg{-~
of particles. Moreover, tests indicated that the results were if#*ag

cell, etc.). A test gives a good check on the numerical stabili )i"'«‘&* Pyt o
of the code as well as the accuracy of the program; the cotG K. ,iﬁ'z e 3
conserves energy to withit¥% — 2% during the first 3 rotations + %ﬁ%{;"&;‘ ,3 >
of the system. I oy XN ey,

0 2 4 6

3. Numerical experiments: results

In this section we report on the numerical study of the sponta ;
neous appearance of the Jeans modes in a collisionless stéi¥ : f

disk representing the disks of highly flattened galaxies. In pziis. oS,
ticular, we focus on the random motion effect both in rigidly g .,:..--\,'i;ki g ‘.'. 1Y
rotating disks and in differentially rotating disks. The structure ‘ﬁ”&: : '5'"

[

that appeared in computer models are interpreted by us in ter ) 3

of the stability theory. It will be shown that the stability crite% 2 s 6

rion obtained in numerical experiments is close to the theoretical 1=2.3

generalized stability criterion (3). Fig. 1. N-body (N = 6480) gravitational simulation snapshots at nor-
malized timeg for the rigidly rotating disk mode(2Q2/x = 1) with

3.1. Rigidly rotating disk the radial dispersion of random velocities of partictes= 0.2cr,

wherecr is the marginal Toomre’s dispersion (Eq. [1]). The time here
First the rigidly rotating disk was investigated. In Fig. 1 we sho@nd everywhere is normalized so tftat= 1.0 corresponds to a sin-
a series of eight snapshots from a run with the cool modéle revolution of the disk. The direction of disk rotation is taken to be
i.e., the rigidly rotating modekl/Q2/dr = 0, in which stars all clockwise. The box here as well as in calculations shown in Figs. 2-5
move along almost circular orbits and the radial dispersjon 2"d 10-11 is taken to be rectangulay, x Ly = 6A,; x 8A,, where
of the random velocities is smaller than the critical Toomre)é’ is the ordinary Jeans-Toomre wavelength (Sect. 2). The system is

N — 0.2 T , e i 110 0.2 violently unstable to a gravitational mode with the wavelength ;.

one, na_me ¥r = 0.2cr, OF Oom_re SQ_'V& UE IS equalto U.2, ryase results agree with previous studies, and are the manifestation of
respectively. As has been predicted in the theory (see the |fs |assical Jeans instability in rapidly rotating disks.
troduction), the Jeans-type instability develops quickly in the
system during the time of the first rotation,Q2~!. As one can

see from Fig. 1, the system’s evolution can be qualitatively dihe size of a typical void (or a typical distance between the
vided into three stages. At the beginning, at times 0.1 the filaments) both in the radial direction and in the azimuthal di-
particle distribution in thex, y)-plane is nearly random. Thenrection is~ ), indicating that perturbations with wavelength
attimes ~ 0.2the linelike structures develop. Attimes- 0.4 A ; have the fastest growth rate. Such a size of a void is in agree-
most of the stars are accumulated inside the lines which forrmant with the theory (Appendix A.1, Eq.[28]). To stress, the
“honeycomb” network with large voids between the filamentanalogy to honeycomb should not be taken too far since glob-
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Fig. 3. Snapshots from the evolution of the rigidly rotating disk with
¢ = L.5cer. In contrast to what one can see in Figs.1 and 2, the
system now is practically stable with respect to all local gravitational
perturbations.

dispersiorr..;; might be a bitlarger thasy. Although this value

of c..i¢ IS In general agreement with the theory, it is also disap-

pointing that it is not exactly equal tg-. Strictly speaking, we

do not know the reason for such a larger valuegf,, while it

Fig. 2. The rigidly rotating disk in which the usual Toomre’s conditiornight be attributed either to the linearization on the theory side

for stability toward axisymmetric perturbations, i.€.,= ¢ holds at or the linearization on experiment side (Hill's approximation).

each point. The model is only weakly unstable with respect to Jeall$e should note also that no better agreement can be expected

type modes. from the theory described in the Introduction and our greatly
simplified theory presented in Appendix A.1 (see, for exam-
ple, the approximate expressions for the Bessel functions). In

ally the filaments are quite randomly oriented and there is addition, one obvious shortcoming of the numerical procedure

preferred direction. At the third, later stage, a tendency towandlsed here is that gravitational forces on a given target particle

what Toomre (1990) called “moon-making” is clearly seen iare calculated only from other particles whose nearest image

Fig. Lattimes > 2.0. Thatis, the lines disintegrate into severdies within the distance,,x < % min{L,, L,}. The accuracy

pointlike “moons,” while voids are filled with few stars. It is in-of such an approximation may need further investigation be-

teresting to note that moon’s number density is approximatelguse the gravitational forces are the long range ones. Clearly,

1/2%. in a more accurate model one also has to include more distant

In the second set of experiments with the rigidly rotatingnages in the calculation of the gravitational forces.

disk, we simulated a system which is stable according to Toomre

1964):.c, = c¢r or Q = 1, respectively. The evolution of the . . . .

Enodel)is shown in Fig. 2. In sSch a S)ystem this relatively hig?iz' Differentially rotating disk

temperature essentially reduces (but does not eliminate cdmthe current subsection the development of the Jeans instability

pletely) the growth rate of the instability, i.e., the instability i$n the nonuniformly rotating diski©2/dr # 0, is studied. Figs. 4

sensitive to Toomre'§-value. Now the disk is near the stabilityand 5 clearly show that in a disk with the Keplerian shear profile

threshold. Again, in agreement with the theory, the size of tk&X2/x = 2) a fast nonaxisymmetric instability develops both

voids is abouf\ ; and the number density of moonssisl/\%. in a Toomre unstable system,(= 0.2c7; Fig.4) and in a

In the final experiment with the rigidly rotating system w&oomre stable onecf = cp; Fig.5). A spiral pattern (more

set att = 0 the velocity dispersior,. = 1.5¢7 (or @ = 1.5). accurately, a chainlike structure or “wakes”) develops rapidly

The results are shown in Fig. 3. The system becomes practicatiythe initially featureless disk on a dynamical timescale,

stable. Therefore, we conclude that the critical dispersion(s . Unlike in the case of rigid rotation (Figs.1 and 2), the

nearl.5cr. Why the disk is still unstable (more correct, weaklgtructure now consists of elongated trailing filaments. Note that

unstable) wher, > ¢ bute, <~ 1.5¢r, orl < Q <~ 1.5, inagreement with the theory as described in the Introduction,

respectively, remains an open question; the modifications dien Toomre’s stable nonuniformly rotating disk (in whigh=
to the effect of azimuthal forces do not help in this case of rigicdr Or @ = 1, respectively; Fig. 5) is still violently unstable to
rotation (Appendix A.1). spiral perturbations growing on a dynamical timescale. This
To summarize, computer configurations with increased Véerce instability of the system with. = ¢ indicates that in a
locity dispersion change more slowly than their low velocitglifferentially rotating system the instability of nonaxisymmetric
dispersion counterparts. This result is consistent with the th@grturbations cannot be suppressed by the ordinary Toomre's
retical prediction (Eq. [30]). critical dispersiorcy.
Thus, Toomre’s local stability criterion is only reasonably The pitch angle of spiral wakeg < 35°, thustan? ¢ <
accurate in the case of the rigidly rotating disk, and the critichland the asymptotic Lin-Shu approximation of moderately
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Fig. 6a—d.The orientational correlator of particles) (Eq.[13]) vs.
the perturbation angle (in degrees) at the calculation time 0.5
Fig. 4. The differentially rotating disk with the Keplerian rotationfor differentially rotating models with the velocity dispersianc, =
(2Q/x = 2) and the radial-velocity dispersien = 0.2c7. Themodel 0.2¢r,be¢, = cr, Cer = (2Q/k)er, andd ¢, = 1.5 x (2Q/k)cr.
is violently unstable against rapidly growing, trailingg ¢ 0) nonax-
isymmetric (spiral) perturbationsr{ andy> # 0) of the Jeans type. A . . .
typical radial distance between spiral filaments-is\;; the number N the cool model (Fig. 4) develops at times- 0.2 — 0.3 but
of filaments~ BL./\, ~ 12 (Eq.[29]). Notice the change in the in the warm model (Fig. 5) it develops at somewhat later times
structure of the instability in compare with that seen in Figs. 1 and Z. ~ 0.4-0.5, i.e., the structure in the simulation illustrated in
Fig. 5 is weaker and takes longer to form than in the equivalent
cooler model shown in Fig. 4. Hence, the growth rate of unsta-
ble perturbations in the warm model is smaller than the growth
rate in the cool model. This is a natural consequence of greater
random motions as is shown in the theory (Appendix A.1).
Also, as one can see visually in Figs. 4 and 5 these elongated
trailing filaments, which are similar to those found in spiral
galaxies, are very different from the “honeycomb” structures
which appear inrigidly rotating disks (Figs. 1 and 2). The former
definitely have a prefered directian,. To quantitatively study
the breaking of the rotation symmetry we plot in Figs. 6a and
6b the orientational correlator of stars at the calculation time
t = 0.5 for models withc,, = 0.2¢r ande,. = ¢, respectively,
defined by

1 27

n(w) = (i) = 5 [ miw)av. (19
T Jo

where(- - -) denotes averaging over all the stargy)) is number

of stars inside a segment aroundvith distances not exceed-

ing r,, = Ay (cf. the usual “friends-to-friends” method to find

Fig. 5. The disk with the Keplerian rotation curve and dispersipa= grOl_Jp_S in particle d'smb_u_t'_on)‘ Thls_value of, is chosen to_
cr. Eventhoughthe velocity dispersionis equal to Toomre’s critical offkNibit shortrange order: itis conveniently larger than the width
cr, this differentially rotating model is still violently unstable agains@f the filaments but smaller than the scale on which filaments

Jeans-type modes. develop the curvature. It seems, therefore, that the signal is opti-
mal. The peak at the valugg = 30° — 40° is clearly seen both
for the model withe,, = 0.2¢7 and fore,, = ¢r. Moreover, in
tightly-wound perturbations used throughout the theory diie direction perpendicular to; at the values) = 120°-130°
scribed in the Introduction and Appendix A.1, does not fail. one sees negative correlation.
In agreement with the theory (Eqg. [30]), the disks become Of course, we do not see a network of parallel equidis-
progressively more stable as the initial velocity dispersion is itent lines. So we cannot rely on the standard Fourier treat-
creased. This is clearly seen in Figs. 4 and 5: the spiral structovent to analyze the structures seen in Figs. 4 and 5. One can
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Fig. 7a—d. The correlatorP(z) at the calculation time = 0.5 for
differentially rotating models with the velocity dispersica.c, =
0.2¢p,b e =cr,cer = (2Q2/k)er, andd ¢, = 1.5 x (2Q2/k)cr. t=0.7

Fig. 8. Time-development of the nonuniformly rotating model of stars

(2Q2/k = 2) distributed over thel, x L, = 5\; x 5 unit cell,
clearly see, however, that a characteristic distance betweenthe 5000, andc, = cr.
nearby (nearly parallel) lines is of order 84 ; (Eq.[29]). As
for the present study, the latter fact convincingly indicates th ik
we have dealt with a gravitational instability rather than with
random process. The translation symmetry in the direatipn
is clearly unbroken, while in the perpendicular direction a s
ries of alternating peaks and dips is seen. To describe the lat
phenomenon quantitatively we calculated the correl&or), &
wherez = z cos s + y sin s andz, y are the coordinates of a =%
particle, in the directiow + /2. We counted the average nums
ber of starsP at the timet = 0.5 in strips of widthA = L, /30
aroundz; the results are presented in Fig. 7a—d. From Figs. 7@

in the present paper. et 3 s A%

To show another direct indication that it is so, we repeated 1

. X . . t=0.6
calculations with the nonuniformly rotating models of smaller
sizesL, x L, = 5\; x 5A;, N = 5000, ¢, = er andL, X  Fig.9. Time-development of the nonuniformly rotating model of stars
L, = Aj x Ay, N = 5000, ¢, = 0.2cr. The results of these (20/x = 2) distributed over thel, x L, = Ay x A; unit cell,
simulations are shown in Figs. 8 and 9, respectively. As one can= 5000, andc, = 0.2cr. Notice the change in the number of spiral
see, now in full agreement with the theory, the number of spinakes in Figs. 8 and 9 in compare with that seen in Fig. 4.
wakesn,, is considerably smaller than with that in simulations
of the L, x L, = 6X; x 8\; model (Figs.4 and 5) but still
corresponds to the theoretical predictiop ~ 8L, /)\; ~ 10 that the disk is near the stability threshold (Fig.6c). This is
(Fig.8) andn,, ~ 8L, /A; ~ 2 (Fig. 9). also seen quantitatively in Fig. 7c on which the correldr)

We then simulated a differentially rotating disk which i€learly has less structure on the standard deviation scale.
stable in accordance with the generalized local stability criterion Finally, similar to the case of the rigidly rotating disk, the
(3). Fig. 10 shows the observed evolution of the model witlalue of the generalized stability criterion (3) should probably
¢r = (202/k)er. As can be seen, in contrast to the previouse increased by the facter 1.5. To prove this suggestion, in
simulations (Figs. 4, 5, 8, and 9) the model is indeed more stablg. 11 we show the evolution of the model with = 1.5 x
gravitationally. The orientational correlator of stafg)) shows (29Q/k)cr. Asone can seein Figs. 6d, 7d and 11, now the model
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Fig. 10.Evolution of the mildly unstable disk with the Keplerian rota+ig. 11. The disk with the Keplerian rotation and velocity dispersion

tion curve and dispersiot) = (2Q/k)cr. cr = 1.5 x (2Q/k)cr. All gravitational perturbations are practically
suppressed, including the most unstable nonaxisymmetric ones. The
result agrees with the theoretical explanation described in the Intro-
duction and Appendix A.1.

is practically stabl8 The contrast between Figs.4 and 10, and

Figs. 4 and 11 establishes experimental evidence to support the
theory outlined in the Introduction and Appendix A.1.

We conclude that the basic theory explains the results gdneous disk, that is, when the generalized local stability con-
local N-body simulations. That is, in order to suppress the iglition (3) is satisfied, other spiral perturbations of the kinetic
stability of arbitrary but not only axisymmetric Jeans-type gratype will grow. The cause of this kinetic instability of small-
ity perturbations in a differentially rotating stellar disk, includamplitude perturbations is the resonant interaction of drifting
ing the most unstable nonaxisymmetric perturbations in the tsars with the field of the spiral Jeans-stable waves at the coro-
form, the value of the radial velocity dispersion must exceedtion in a spatially inhomogeneous particulate system. In other
cerit = a(22/k)er, wherea =~ 1.5. The latter will guarantee words, the cause of the instability is the resonant wave-particle
lack of any exponentially increasing perturbations of the Jeangeraction in a hydrodynamically (Jeans-) stable stellar disk.
type. It is similar to the instabilities caused by a Cherenkov effect

In closing of the subsection we would like make the foltan inverse Landau damping effect) in a magnetized plasma. In
lowing points. The Jeans-unstable perturbations in a disk grpfasma physics the analogous instability is already known as
aperiodically: they are aperiodically shrinked (Eqg. [27]). On thihe transverse magneto-drift instability of an inhomogeneous
other hand, Jeans-stable perturbations are not damped, so thaiisma (Krall & Rosenbluth 1963; Chamberlain 1963). Since
the plane of the stellar disk the undamped waves can propagateh a wave-particle interaction, being intrinsically a kinetic
similar to magnetoacoustic waves in a plasma. It was the initiateraction, involves resonant stars, it cannot be derived from
idea of Lin & Shu (1966), Lin et al. (1969), and Shu (1970) tthe ordinary epicyclic equations of motion of a mean particle
explain the phenomenon of the spiral structure of galaxies bynsidered in Appendix A.1 or from fluid-like equations used
these neutral waves which propagatae in the plane ofas{?lsteluy. Lau & Bertin (1978), Lin & Lau (1979), Drury (1980), Lin

Griv (1996), Griv & Peter (1996), Griv & Yuan (1996), Griv& Bertin (1984), and others. The next, postepicyclic approx-
et al. (1997b), and Griv (1998) recently investigated the inflimation must be used for this purpose both in the analytical
ence on the disk stability of the so-called drift motion of paapproach of the Boltzmann-Vlasov kinetic equation and of par-
ticles in planetary rings and stars in galaxies. This addition tigle dynamics (Griv 1996; Griv & Peter 1996; Griv & Yuan
the basic circular minor systematic motion proportional to tlE996; Griv et al. 1999).
square ofc, (proportional to the temperature of the system), We expect that resonant wave-particle scattering of stars as
whose value can be defined in the high-order approximationmfitlined above will lead to further heating of the disk up to values
Lindblad’s epicyclic theory, is analogous to the magnetic (@f @ > 2Q2/x. Similar to the case of Jeans instability, a phase
gradB) drift of an electrically charged particle of a plasma, andf kinetic instability may also increase the central condensation
is due to the nature of the differential rotation of the systeof the disk and assist in the formation of a condensed nucleus
(Grivnev 1988; Griv 1996; Griv & Peter 1996). It was showf the galaxy (and a diffused outer envelope).
that even in a Jeans-stable differentially rotating, nearly homo- It may be suggested that this type of Landau instability may
5 — - . ) be related to that discovered in globgtbody simulations by

I_n cqnjunctlon w!th the last result, it sh_ould be emphasnzec_i agaiihwood & Lin (1989) and Donner & Thomasson (1994) [see
that in view of the Lin-Shu type asymptotic theory the analysis p%riv 1998 for a discussion]. What one can see in Figs. 4 and

sented here provides only an approximate estimation of the local sia- . .
bility criterionp y PP are not the recurrent spiral waves found by Sellwood & Lin

” In turn, Toomre (1969) has shown that density waves of the kil‘?d‘d Donner & Thomasson.. We _S}JggeSt that.m 0rc!er to find
originally proposed by Lin and Shu (Lin & Shu 1966: Lin et al. 1969the recurrent Landau-type instability in local S|mullat|ons, one
Shu 1970) cannot be stationary, and a wave theory can explain fi@s to include in the linearized equations of motion (9)—(10)
phenomena of spiral patterns only if some instability exists which coutdnd (14)—(15) terms proportional to the square of the epicyclic
cause small perturbations to grow to observable amplitudes. radiusp along with other terms of order/r (one has to include



832 E. Griv et al.: Local stability criterion for a gravitating disk of stars

the effects of spatial inhomogeneity as wBilyhe reason for In both cases, rigidly and differentially rotating systems,

this is that the kinetic instability of Jeans-stable perturbatioseme residual instability is observed f@rup to a factor~ 1.5

is expected to be associated with the resonant conditioa times the critical valué)..;;. The reason for such a minimally

kvp, wherevp, is the velocity of the star drift proportional tolarger value of the critical velocity dispersion might be partly

p%(dQ)/dr) [Griv 1996; Griv & Peter 1996; Griv et al. 1999]. due to the shortcomings of the asymptotic Lin-Shu density wave
theory which is used here. Accordingly, we restricted our anal-
ysis to the approximation of moderately tightly-wound spirals

4. Conclusions and discussion (Appendix A.1). Indeed, as is known, since all the above re-
sults are given for moderately tightly-wound spirals, they are

We described some many-particle experiments concerning Bipject to an uncertainty of a factor bf+ O[tan? v], where

”?e“ca' computations on the dy“am'cs of the stellar layer Oftg‘n2 ¥ < 1. Straightforward estimates show that in the case of
differentially rotating, almost centrifugally-supported galax

; I 5 _
Our usage of the oversimplified model of the layer (tw)éplrals shown in Figs. 4, 5, 8, andt8n® v is about0.2-0.3;

. . . LT . c{'hus, we can have reasonable confidence in theoretical and ex-
d|r_nenS|onaI disk) is justified becaqse glpb‘akbody SIMU= " erimental results perhaps to witt@% — 30% only. In this
Irig??;’ tnzvpflazzerrr:asklc;V\:ir;tltehZFfftehrir:ggl?oSItc;lne Zi/(;?uc;[:)onnzfr:rc%gard’ it is interesting to note that at least for a disk with a

. . L . i locity Polyachenko (1 ho di
rapidly rotating thin disk (Hohl 1978). We argued that in ge constant rotation velocity Polyachenko (1989), who did not use

eral computer experiments presented here confirm the pre [ie approximations of the Lin-Shu theory, has found a slightly

tions of the linearized stability theory of small-amplitude gravit feater value of the critical velocity dispersion than the crite-
: . o ion (3) givedl Interestingly, such a slightly greater value of the
perturbations developed by Bertin, Lau, Lin, Mark, Morozov, (3)9 4 gy gntyg

Polvachenko. and others: the differentially rotating. marainal ritical velocity dispersion is also consistent with the results of
olyachenko, and oIners. the difierentially rotating, marginaiys,  , -o.g (1981) numerical experiments with stellar disks, in
Jeans-stable disk of stars (and a planetary disk with rare

. o . : '€ GPhich the disks with a flat rotation curve became completely
lisions between mutual-gravitating particles) is dynamicall . N
table specifically whe@ ~ 3.

hotter than the original Toomre’s local stability criterion pre= Also. following Griv (1992 btai |
dicts. That is, in a nonuniformly rotating disk of stars the crit- so, following Griv ( ), to obtain a more accurate value

ical Toomre’s stability paramete...; ~ 2/ is appreciably of critical velocity dispersion one has to consider the next lead-

greater than (although still of the order) unity. In actual galaxié.zr%\g orQer inthe f':\symptotic gxpansion by including higher-order
and planetary ring&cit ~ 2. ferms in the epicyclic amplitude.

A dynamically cold rigidly rotating disk with the initial ra- '™ @ddition, the shortcomings of local experiments in Hill's
dial disperSion of random velocities of stays< cr is found to equatlons context are qulte obvious. For Instance, almost cer-

be gravitationally unstable as predicted first by Toomre’s (1964 nly in contrast tq our calculatlons, one has to mcIu_de gravita-
stability analysis. Namely, small-scale almost radial perturbté-nal forces on agiventarget particle from other particles whose

. : . 1o
tions grow exponentially during the time of the first rotation earest image lies out of the distancg. = 5 min{La, L }

the system under consideration. In agreement with the theor ]ﬁﬁe Sel<__:t. 23]' Thri]s Is b_ecz?usedof the _Ion?ﬂrfatr)]gg of g?vitational
the numerical model of the warm,(= cr) rigidly rotating disk orces. Further theoretical and experimeritabody studies to

the relatively high temperature leads to significant reduction gprify the problem are desirable. At the present, however, the

the growth rate of the Jeans instability; such a disk is near {rauses of these relatively small discrepancies between the re-

L . > . sults of our theory and locdV-body simulations are not clear,
stability thresholq. In the hot.numerlcal mc_).de,l ¢ 1.5cr) al but may be due to both theoretical and computational factors
Jeans-type gravity perturbations are stabilized.

By way of contrast, even the Jeans-stable (by the origirjgf't mentioned above.
Toomre's criterion) differentially rotating disk is still violently According to Egs. (27) and (30), the Jeans-unstable pertur

. ) X ations in a spatially homogeneous disk grow aperiodically with
unstable to the relatively large-scale nonaxisymmetric mo g2 growth ratéSw, ~ Q. This means that as a rule the Jeans

whenl < @ < Qgit- In such a system the spiral structur? . . . - 1
. : . - nstability develops rapidly on a dynamical timescal€—; in
develops rapidly during the first rotation of the system only, y ps rapidly y

) . . : . alaxies2 ™! ~ 10% yr < T, whereT ~ 10'°yr is the Hubble
Fl'nally, @ffgrenually rotating, spat|aI.IY homogeneo>us mode imescale. Inevitably, the velocity dispersion of particles would
with the initial value of Toomre’s stability parame®@r~ Qcrit  pe expected toincrease in the field of unstable waves with an am-
(or ¢, = (2Q/k)cr, respectively) show little structure that carplitude increasing with time as a result of “hydrodynamic” (non-
be associated with the Jeans instability. This basically agr@esonant) collective interactions between Jeans-unstable pertur-
with the theory discussed in the Introduction and Appendix A.pations and stars: the Jeans instability grows on a dynamical

timescale and presumably heats the disk uBtic Q¢ In

8 One has to recognize, however, that corrdcbody simulation
of resonant effects is a very difficult problem in stellar dynamics be-° According to Polyachenko (1989) the marginal stability condition
cause of lack of fine resolution in the phase space. Perhaps, the béttedeans perturbations of an arbitrary degree of axial asymmetry has
way to study the resonant wave-star interaction involved in the sugeen available since 1965 (Goldreich & Lynden-Bell 1965), though in
port or damping of the modes is to solve numerically the collisionlessslightly masked form. See Polyachenko & Polyachenko (1997) for a
Boltzmann equation similar to that by Nishida et al. (1984). detailed discussion of the problem.
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addition, the Jeans instability, which can effectively heat thend to cause clumping of the matter. This tendency will be
medium without raising the entropy, leads to the mass rediunteracted by centrifugal force due to the rotational motion
tribution of the system by increasing the central condensatiofithe mass, and stellar “pressure” due to the thermal motion. If
of the disk (and a diffused outer envelope). The diffusion die “binding energy”

stars in the velocity space and the coordinate space takes place

because stars gain additional oscillatory energy of the gravifé-: Egravity + Erotation + Ethermal

tional f_|eld m_the unstable density waves (see Griv et al. 19%?1a clump of matter of radiug....,, in orbit about the galactic
for a discussion).

o . hat ab h LEGE center at radiug, is negative, collapse will occur. I > 0,
Itis interesting to note that about the same valu@ot 2 any perturbation in density will be damped out. Below, through

brings both the observations of actual rapidly (and nonunke st,dying of dispersion relations, we reexamine the theory
our own Galaxy (Toomre 1974, 1977; van der Kruit & Freeﬁractically collisionless
man 1986; Bottema 1993) and the glob&body simulations %eneous galactic disk of stars.

(Hohl 1971, 1972, 1978; Sellwood & Carlberg 1984; Griv el order to find the dispersion relation describing the col-

al. 1994; Griv & Chiueh 1998). Also observations and 10cgl e oscillations of a medium near its metaequilibrium state
simulations of the Saturnian ring system show about the safie, i, the method of particle orbit theory, one must determine
value ofQ (Lane etal. 1982; Salo 1992, 1995; Griv 1996, 199, o the nerturbed particle trajectorEsTherefore, we start by
Griv & Yuan 1996). Therefore, we conclude thatin general bofjy,jying formulae for nearly circular stellar trajectories in the
the theory and ouN-body simulations are in agreement With 5¢ing galactic disk with nonaxisymmetric perturbations due
observathnal data. . i to spiral density waves. The perturbation of the main smoothed
In closing, the differences between actual inhomogeneoliga tic potential will be assumed small, and the star's motion
gravitating systems and computer models used in our simuldy pe represented, as usual, by epicyclic free oscillations plus
tions may resultin ambiguity in the applications of tNebody 5 jitional forced ones under the action of the gravitational field
calculations and the theory to galaxies and planetary rings.Jfie \waves. Then, the perturbed (or forced) velocities will
order to resolve th? e}mbllguny, _'t will be possmle in the fUtUrBe ysed in the continuity equation to determine perturbation of
to make more realistic simulations of this type and to exteqgly g, rface density. Equating the result with the surface den-

the theory so as to allow for spatial inhomegeneity and a findgy, given by the asymptotic solution of the Poisson equation,
thickness of the disk. the dispersion relation will be obtained. Finally, from the dis-
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, two-dimensional, and spatially homo-

Appendix A
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flat galaxies that are seen in the sky. With the exception of resleory, when terms proportional {p/ro)? are also retained in

nances, the small perturbing gravitational field of a wave caughs linearized equations of motion.

small forced oscillations in addition to the usual free epicyclic Now in orderto find aninhomogeneous solution of Egs. (14)

motion. Of course, itis doubtful that the approximation of nearlgnd (15) we have to choose a particular form of the gravitational

circular orbits adopted above is valid for the very central regiopgrturbation®, . Bearing in mind that the equilibrium distribu-

of flat galaxies. Assuming the nearly axially symmetric modeipn does not depend on thg€and thez) coordinate, in arotating

the vertical, normal to the plane motion in the rapidly rotatinfjame, the perturbatio®; may be expanded in a Fourier series

self-gravitating disk can be neglected (Shu 1970; Griv & Pe- -

ter 1996)..This e}ssumptior? is partially s.uppor.ted by the glop@ll(n o, t) = Z ‘fm(r) eime—iwt

N-body simulations showing that the inclusion of the verti-

cal motion makes little difference to the evolution of the thin,

rapidly rotating disk (Hohl 1978). wherew, = w—mfQ is the Doppler-shifted complex frequency
The disk is subject to the equation of continuity and thef excited waves as seen by the moving star and the tefin

equations of motion along the radial and azimuthal directiorigkes into account the possibility of different harmonics in the

The linearized equations of two-dimensional motion (9)—(10) li@tating system (many-armed waves), diid, andiSw, are

the frame of reference rotating with angular veloditycan be the real and imaginary parts of the wavefrequency, respectively.

rewritten in Hill's approximation as (Spitzer & SchwarzschildEvidently®; is a periodic function op, and hence the azimuthal

m=—0oo

1953; Toomre 1990): numberm must be an integer. The criteria for stability differ
for eachm, and must be determined by a detailed analysis. In
dvr _ 200, + grorlg@ = ,@’ (14) the framewprk of the linear theory, we can select one of the
dt dr or harmonics®(r) exp (imy — iw,t), which rotates at a uniform
dvy, 1200, = _109% (15) ratefd, = w./mandm is the number of spiral arms.
dt ro Op For such a form ofp, the particular solution of the system

(14)—(15) is (e.g., Lin & Lau 1979, Sellwood & Kahn 1991, and

whererq is the radius of the chosen circular orbit in t
o he) Griv et al. 1999):

plane Q2 = Q(rq), andr; andy; are small perturbations of the

coordinates. Eqs. (14) and (15) must be solved simultaneously i 0% y
with the continuity equation and the Poisson equation. o) = —— [w* — 20k, P (18)
In the model described by Egs. (14) and (15), the case of rare ~ “* ~ F or
gravitational collisions between particles is considered when x eimeTiwst
1 ~
ke QS v, o) = e {(492 — k24 W?) k,d
wherev, is the effective collision frequency. That is, collisions 9% | 4
are so infrequent that their effects on both unperturbed and per- + QQw*aT] elmeTiwst (19)
turbed particle motions can be neglected. Evidence in favour of

such an almost collisionless galactic model is provided by 0bne solutions (18) and (19) describe the forced velocities of a
servations (Chandrasekhar 1960). The evolution of the systgg in the radial and azimuthal directions under the action of the
described by Egs. (14) and (15) is determined by pure steligha|l gravity perturbationp'"| and|vl)| < ro€. Thus, the
encounters with collective modes. _present theory suggests some systematic radial and azimuthal
Neglecting all the terms containing the small perturbatifjotions of the stars distributed in the form of a spiral-like flow
@1, the homogeneous differential equations (14)—(15) yield thgjg which is a small correction to the basic almost circular
ordinary Lindblad’s expressions for unperturbed coordmatsaactic motion.
and velocities of a star along the elliptic-epicyclic orbit: To stress, the solutions (18) and (19) define the forced veloc-
vy ) itiesv(®) (v(?)) of an individual star. In order to obtain the per-
r® =r — —=[sin(¢o — t) — sin go); v = v i i i ; i
o 0T 0 0s Y7 = VL turbed density, by using the continuity equation, we shall wish to
x cos(¢o — kt), (16) average Egs. (18) and (19) over the distribution of initial veloc-

20 v, o K ities. Such a distribution (the so-called modified Schwarzschild
= Q4 = [eos(do — wt) — cos ol vg) =g distribution) has been derived by Shu (1970) as follows:
xvy sin(¢o — kt),  (17) 2Q(r T v?
fo(E,J.) = (U)M g ——
k(ro) 2mc2(ro) c2(ro)

wherep/rq = v, /kro < 1andv, , ¢o are constants of integra-
tion (Spitzer & Schwarzschild 1953). The set of Egs. (16)~(1fjeres = 2 /2 and J. are well defined integrals of motion,
describes the rotation of a star along the epicycle with frequengyt is, the epicyclic energy integral and the angular momentum

x and the mean epicyclic radiys ~ v, /. Griv (Grivnev) integral, and a distanog is defined by the relation
(1988) and Griv & Peter (1996) have obtained expressions for

the galactic orbits of stars to the second order of the epicyclic = 7(rQ2 + v,,) = 75Q(ro).
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Then, a star in circular motion at a distangehas precisely the (17) Such a substitution is permissible in the framework of the
given value ofJ,. Such a distribution function for the unperdinear theory. Then by averaging over initial random velocities
turbed system is particularly important because it provides afiith the equilibrium Schwarzschild distributiofa (v2 /2, o),

to observations (Shu 1970). the integral in Eq. (20) can be approximated as:
The continuity equation for a small density perturbation 9 9 9
. . . . . . (I)lo'() 2 40° — K + Wy, 2
o1(r, t) in a spatially homogeneous, two-dimensional disk is o1 = {k + k } W
w2—xg2 |7 w2 @
1o 10 = e () 40k, ko0 ~= e "I, (x)
_ _ 10 (1)) 77( (1)) / l T rRe00 P 22
7 /_OO {r or (UOMT * r Op 70 ] dt x l;}@ wy — K T w2 — K2 p:z_:oo Wi — Pk (22)

ar 1o Op orderl. Its argument iss = k2c2 /k? ~ k2 p? with the effective
wavenumbek:, defined byk? = k2{1+[(2Q/k)? — 1] sin® 1}.

where|o /0| < 1 and we omitted the termgv,./r, i.e., we To obtain Eqg.(22) we introduced the polar coordinates in

neglected the curvature effect. This is a valid approximatiovavenumber spack. = kcosy andk, = ksiny. The in-

if r is large (Lin & Lau 1979; Sellwood & Kahn 1991). Totegral in Eq. (20) was estimated using the forced coordinates of

find a solution of Eq. (20) one has to choose an amplitude gtrsr; = fvﬁl)dt andp, = (1/ro) fq;fpl)dt (Egs. [18] and

the perturbatior(r) in the set (18)—(19). If a medium is only[19]), the identity

weakly inhomogeneous on the scale of the radial oscillation

— 00

t (1) (1) . . . .
%_UO/ <8'UT +i8v¢ )dt’, (20) Wherel,(z)is the Bessel function of imaginary argument of the

oo

wavelengthy, i.e., pti(kovy /r)sing _ Z Ji(kevy Jr)etis
l=—o0
L> XandL > p,
r and the formula:
_ —1 . . oo
yvhereL = \.8 Inog/0r|~t is the radial spale of the spatial / e‘TQIle(aa:)Jl (Bx)ad
inhomogeneity, the wave behaves approximately as a plane one 0

simplified by using the convenient WKB approximation. We 5,3 ¢XP | =~ 53— 52 (23)

seek thus the radial variation of the wave amplitude in a form:
whereJ;(k.v, /k) is the Bessel function of the first kind of the

&(r) = 00(r) ¢ ST k,,dr" (21) order/. Note that analogous integrals appear in the theory of
magnetic plasma oscillations when one integrates the perturbed

wherek, (r) is the radial wavenumber (Shu 1970; Griv & Pephfise-space distribution function along the unperturbed particle

ter 1996). In Eq. (21)0®(r) is a slowly varying amplitude, trajectories (Krall.& Rpsenbluth 1963; Alexandrov et al. 1984,

while the rapidly varying part ofb(r) resides in the phase,P- 110; Krall & Trivelpiece 1986, p. 402).

i.e., | kedr’| > 1. Since the amplitude and the wave vector In Eq. (22) the denominators vanish Wh&im — k= 0

depends weakly on the coordinates, we can construct the siithese values one gets hydrodynamic-type “wave-fluid” reso-

tions of dynamic problems for weakly inhomogeneous disks fRRNCes: and Fhere_:by this solution obtained in th_e framework of

the form of an expansion in the parameléi; when calculat- linear approximation c:_;mnot be used. The most important reso-

ing the terms of higher order one can simultaneously solve aNces are the corotation one, for which 0 and correspond-

field equations with any desired degree of accuracy (Alexdf9!Y w- = 0, and the inner and outer Lindblad's resonances,

drov et al. 1984, p. 243). Further, by applying the zero-ordfq" Which! = +1 andw. = +x. Resonances of a higher order,

or the so-called local approximation of the WKB method we= 12, %3, - -, are dynamically less important (Griv & Peter

shall assume thatb andk, are homogeneoué® = const and 1996). It is obvious that qll the terms excépt 0 in the sum

k. = const. In other words, in the local WKB approximatior?ve”he Bessel functions in Eq. (22) can be ignored for the most

the wave is considered plane: all terms of the ordél and of important long-wavelength oscillations, for whigh< 1. (But,

higher order are fully neglected (or all derivativesi@f(r-) and of course, in order to be appropriate for a WKB wave approxi-

k,(r) are neglected). mation we consider the perturbations with|r > 1; typically,

Thus, from here on we consider localized dispersion rel-galaxiesr/p ~ 20.) For example, comparing the contribu-

tions only. The reason for doing so is that localized solutiofi@ns of |I| = 1 to that of/ = 0, in the long-wavelength limit

seem to describe the physical situation in what follows in@ne obtains (see below):

natural_way. The_ meaning of Ioc_allzed dispersion relation hz}s(x) W2 oz w?

been discussed in plasma physics (Krall & Rosenbluth 19 ) 2 ~ 552

Alexandrov et al. 1984, p. 243; Krall & Trivelpiece 1986, p.

418). 11 Since we work within the two-dimensional disk model, the wave

Utilizing the above expansion Qi, we can approximate vectork(r) is perpendicular to the rotation axis, thathsis given by
k - r by substituting the unperturbed orbits from Egs. (16) arid= (k2 + k2)"/>.

(Alexandrov et al. 1984). In this case, the analysis can be greatly | ( a? + ﬁQ) I ( af )
l )
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As we shall see later, one has to consider the case of pertui®aeh a form for the trivial solution seems fairly straightforward.
tionsw? /K% ~ x < 1 only. Therefore the above ratio is of ordetndeed, wherG = 0, that is, when the self-gravitation of the
r? < 1 and in accordance with the earlier assumption terndgsk is neglected, from the generalized dispersion relation (25)
with |I| > 1 can be neglected. we have ordinary epicyclic oscillations:

In Eq. (22) we should consider the low-frequency perturba;,
tions |w.| < x only. Indeed, in the opposite case of the higﬂlﬂ + K% =0,
perturbation frequencies;? > 2, the effect of the disk rota- dr?
tion (or of magnetic field in plasmas) is negligible and therefoigherer; o exp(—iw.t) is a small perturbation of the radius of
not relevant to us. This is because in this case the star motioghis initially circular orbit,r(t) = ro + r1(t), at the motion in
approximately rectilinear on the time and length scales of inteke central field with the effective potential enetBy= &, +
estwhich are the wave growth/damping periods and wavelengifi,/ 2,2 (Griv & Peter 1996).
respectively. In this rotationless case instead of Eq. (22) another Using the elementary solution (26), in the next approxima-
expression for the perturbed surface density can be foundiibih the squared wavefrequency is
plasma physics the analogous problem has been described, eg., , ) B
by Alexandrov et al. (1984, p. 110). wy = wy = K- — 2nGoolkle " Io(x)

To summarize, starting from equations of motion and the x {1+ [(2Q/x)? — 1] sin* ¥}, (27)
continuity equation we obtained the perturbed surface densit ) o
(Eg.[22)]). Self-consistency requires that it should be equal erewj is the square of the so-called Jeans frequency. This is
the solution of the Poisson equation. Such an improved solf}e réquired simplified dispersion relation, which describes the
tion of the Poisson equation in the two-dimensional case RRYSics and the condition of the gravitational (Jeans) modes in
which we are interested has been obtained to the second off@ftwo-dimensional disk. The hydrodynamic-type Jeans insta-
of the Lin-Shu asymptotic approximation of moderately tightlyRility occurs whenwy < 0. _
wound spirals, > k, or tan? ¢ < 1, respectively): Generally, there are two branches to our solution (27): the

case of long waves; <~ 1 or A < 27p, in which we are espe-

o] = — K[ @1 {1 _ ¢ dln {,ﬂ/?gq;} } (24) cially interested, and the opposite case of short wawves, 1.
2nG kyr dlnr The short-wavelength instabilities (those with>> 1) are not
(e.g., Lin & Lau 1979 and Bertin 1980). dangerous in the problem of the galactic disk stability, since

Equating the “in-phase” parts of Eq. (22) and Eq. (24), wisey lead to the very small-scal < p? perturbations of the
get the generalized Lin-Shu local dispersion relation for lowdensity only. Therefore from now on, we consider just the long-
frequency oscillations withw,| < « near a certain arbitrary wavelength (or the hydrodynamical) limif < 1, for which

radiusr in the following form: the following expansions can be used
2rGoy 402 — k2 + W2 3 x
2 . .2 2 * 7.2 —z D~ 2 - ~
wi &K — ] (kr—l—w%k@ e Io(z)fl—x—i—zx ande I1(55)—§~
1 —z ~ . .
1 In the short-wavelength limit,
x> o, S @) (25) g
= wy — Ik 1 1
) ) ) _ ) e ly(x)me "L(z) m —— [1 + 0 ()} ,
It is valid even for relatively open spirals and barlike struc- Varw x

tures throughout a disk excluding the resonance zones.
the principal part of the disk between the infier —1 (where decreasing function dffor a fixedz > 1

w, = —«) and outer = 1 (wherew, = x) wave-fluid Lind- The local dispersion relation in the simple form (27) gener-

blad's resonances considered. Note that Morozov (1980) y, o hat of the Lin-Shu one (Lin et al. 1969; Shu 1970). This
using a kinetic approach numerically calculated the conirin /pe of the dispersion relation for spiral waves’ derived in a sim-
tions of the|l\2> 21 terms and found them to be smal!er th.af%r form, e.g., by Morozov (1980, 1981b) Wh,O used a kinetic
(0'95_0'07)(%/"@ ) < 1 (see also Griv et al. 1999, Fig.1 mappl’oaCh, takes into account effects of azimuthal foreear{d
their paper)._ . . : L . 1 #+ 0). It goes beyond the original Lin-Shu relation in that it
The basic dlsper5|or_1 relation ahove is h!ghly nonlmea_r ié now applicable to the critically important case of the nonax-
th? freqqencw*:_ Following the plasma physms m.ethoq (I.‘!f'isymmetric perturbations concerning spiral structures. This re-
shitz & Pitaevskil 1.981' P 12{.3)’ letus con3|d(_ar various I'm't'.n%tion is qualitatively similar to the standard dispersion relation
cases of perturbations described by some simplified Va”at'odﬁin-Shu inthats2 — #2 both in the long-wavelength, or fluid
of Eq. (25), that have a special interest for us. For instance, Wit = — 0. and in*the short-wavelength limit— cc. S,imilar

SOIV? thig equation by sugcessive appr_oximations. In the first EEﬁ’s’persion relation can also be derived from the Lynden-Bell
proximation, one can omit allterms which depe_ndcp_landk@. . & Kalnajs (1972, Eq.[A11] in their paper) dispersion relation
_Under this condition, the zeroth-order approximation sququr open spirals. Unlike Lynden-Bell & Kalnajs, Morozov, and
IS Griv & Peter, we used here a simplified method of particle orbit
w? = K2, (26) theory.

*

OWP(ile inamore rigorous approximatidy(x) is a monotonically
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InEqg. (27) e *1y(x) isthe so-called reduction factor, which ~ Second, according to the dispersion relation (27), the growth
is approximately equal to unity in dynamically cold systemmte of the axisymmetric gravitational modes has a maximum at
(¢, = 0) and is always smaller than unity in dynamically hothe radial wavenumbeék; ~ /¢, or at the radial wavelength
disks ¢, > 0). Lin & Shu (1966) first introduced such a re- 9re
duction factor; they have already pointed out that the high; ~ —— ~ 2mp. (28)
dispersion stars would not participate in the spiral pattern in
full, and this effect can be described with the help of the reduthe above equation reflects the well-known fact that the veloc-
tion factor. Different forms of the reduction factor are given bigy dispersion shifts the threshold of gravitational stability to-
Athanassoula (1984). The existence of solutions of the dispesard a longer wavelength. At the limit of stability with respect
sion relation withw? < 0 implies the aperiodic Jeans instabilto axisymmetric gravity perturbations the critical radial velocity
ity. In this case of gravitational instability the wavefrequencgtispersion:, ~ 3.4Go,/x and the critical wavelength becomes
is purely imaginary, so that the wave propagation cannot approximately equal tén>Goy/x2. This reproduces the usual
cur. The solutions withv? > 0 describe long-lived natural Toomre’s stability criterion to have a stable disk against ax-
(harmonic) oscillations. The marginal condition between theisymmetric collapse and the usual Jeans-Toomre critical radial
cases is given by? = 0. To emphasize, this instability is hy-wavelength (Toomre 1964, 1977).
drodynamical in nature and has nothing to do with any resonant On the other hand, in the case of nonaxisymmetric pertur-
effects. In a general sense, the instability represents the abitigtions of a differentially rotating disk, the critical wavelength
of a gravitating disk to relax from a nonthermal (or an almoss a slightly longer:
nonthermal) state by collective collisionless processes in much 1/2
less time than the binary collision time. Aarit & {14 [(2Q/k)? — 1] sin® ¥} "~ X, = BAy, (29)

' Apart from the obwogs replacement &f. by k which _where in galaxies as a rufg= 1.2-1.5.
originates from the consideration of the nonaxisymmetrical Third, the growth rate of the Jeans instability is
modes, the relation (27) differs from the corresponding stan- '
dard Lin-Shu 2expres.sg)n by the appeeraece of the facg\%* ~ \/27TG00\/€|{1+ [(20/5)2 — 1] sin? g }e— o (x).(30)
{1 + {(29//@) - 1} sin 1/1}. This factor indicates an extra
clumping associated with the azimuthal forces in the differefrenerallySw. ~ €. That s, the instability growth rate is high
tially rotating media: spiral perturbations, in contrast with radi@nd the instability develops rapidly on the dynamical imescale
ones, are subject to the influence of the nonuniform charac@hich is the time of one galactic rotation Q~1). Eq. (30)
of the rotational motion. Lau & Bertin (1978) first obtained ddicates that open “barlike” modes are seem to be the most
somewhat similar expression for the extra clumping in a gas d{stable Sw,. o |sin¢|. It is important to point out that the
namical model (see also Bertin & Mark 1978, Lin & Lau 19799rowth rate decreases as the radial velocity dispersion grows
Bertin 1980, and Lin & Bertin 1984). approximately asiw,. oc exp(—c?). It is also interesting that

Let us further analyze the consequences of this simple di#-the case of differentially rotating disks the growth rate is
persion relation on the dynamical behavior of disks of stadépendenton the mode numberitis only in arigidly rotating
First, by using the condition? > 0 for all possiblek to sec- disk that the growth rate is independent of the mode number
ond order in asymptotic theory, a generalized stability criteridR addition, for the Jeans-unstable perturbatias$ & 0) the
can be immediately obtained. Indeed, if the nonaxisymmett@vefrequency is purely imaginarffw. = 0 andSw. > 0,
Jeans-type perturbations are to be stable, the value of the s#8d therefore the instability develops aperiodically.
lar radial-velocity dispersion, (r) should be greater or at least ~ Finally, in Sect. 4 of the present paper, we confirmed the
equal to that given by Eq. (1. To repeat, it is clear from the 9eneralized local stability criterion (2) for the case of the most
criterion (2) that stability of the nonaxisymmetric perturbatiorignstable spiral perturbations — barlike ones with: 90° — by
(m andt # 0) in a nonuniformly rotating disk22/~ > 1) local N-body computer simulations.
requires a larger velocity dispersion than the ordinary Toomre’s
critical valuecr (cf. Fridman & Polyachenko 1984, Vol. 1, p.A 2 The effect of interparticle collisions
323). Itis crucial to realize that the various dynamical properties ) ) o
of the perturbations with different are peculiarities of the dif- Thus far, we have studied the dynamics of the collisionless
ferentially rotating disks only. In away of contrast, in the rigidl)¢]5k- Let us here estimate the influence of interparticle colli-

rotating disk2Q2/x = 1 and the critical velocity dispersion (2)SIOns on the dispersion law of Jeans perturbations using the
is in fact equal ta-r-. simple method of particle orbit theory. Of course, the Boltz-

mann kinetic equation provides a more rigorous but much more
complicated treatment of the problem of a collisional disk os-
cillations (Griv & Chiueh 1996; Griv & Yuan 1996; Griv et al.

12 To obtain Eq. (2) by using the dispersion relation (27), one fir§1997a)- ] ) ) o ) ]
finds the critical wavenumbeét..;; from the relationdw? /0k = 0. Including non-physical elastic (gravitational) interparticle
Then thiske.i; is substituted into the dispersion relation and from theollisions, the equations of motion (6)—(7) for an individual star
conditionw3 > 0 the critical velocity dispersion is found. in inertial frame with the origin at the disk center take the form:
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d*r .o 00

az r($)” — o Velr
d, 5. 0P
%(r Q) = 9 — VeTUg,

where the friction ternF' = —v.v approximates the force pro-vﬁl)
duced by collisionsy. = n(sv) is the effective collision fre-

wherev, /rok ~ p/ry < 1 (Spitzer & Schwarzschild 1953).
The particular solutions yield the expressions for perturbed
velocities (cf. Egs. [18] and [19])

— Wy 0P
w2 — K2 +iw.r, Or

eimgo—iw*t’ (35)

quency,n is the number density of particless the effective (1) o 1. § 40% — K* + W} gime—iwat, (36)

“radius” of a particle,(- - -) denotes the average over particles”
of all random velocities in a Maxwellian distribution, and the
terms withy, are small corrections (in the case of rare €2,

and weak collisionsy. < |w.|, in which we are especially in-
terested). This is just the opposite of the procedure in ordinz%r
gas dynamics, where collisions are the dominant effect. This
approach is valid for high temperatures and low densities, when
the mean potential between neighboring particles is small co
pared with the thermal energy. The collision model of the for
(31)—(32) does not take into account the detailed mechani

~ ke wi(w? — K2 +iwyre)

where|w,| ~ ©Q > v, and only the “in-phase” terms are in-
cluded. As we can see from the equations above, in comparison
with the collisionless disk in the collisional system one needs
oyreplace the wavefrequeney by w.. + iv.; thus ifv. /|w.| is
small enough we can ignore these collisions.

Paralleling the analysis leading to Eq. (27) and making use
(r)q'Eqs. (35) and (36), it is straightforward to show that the sim-
@riﬁied dispersion relation can now be expressed as

of the gravitational long-range interaction such as the spatig + ., v, — w?% = 0, (37)
distribution of particles, non-rectilinear orbits of particles in a

rapidly rotating system, etc. (Griv etal. 1997a). It seems that thi§ere as usual? is the squared Jeans frequency. The solution
model can give qualitatively correct results in considered r&t EQ. (37) is

efied disks where the detailed effects of gravitational collisions v

may be ignored.

The linearized Egs.(31) and (32R(r,t) = Po(r) +

®, (r,t) andr(t) = ro + rq(t), take the form:
d*ry _ h§—2ho J1001/00)dt 9B, 9P,

de2 "~ (?"0+7'1)3 B or B ar
—VcUr,

t
. . 0P
(ro +11)2(po + 1) ~ ho — /700 7&;

t
0
—verg / %dt',

dt’

wherehy = r2¢y is the area constant amgpz = (%o /0r)o-

Equations above describe the small depanty(e) of the actual
radiusr(t) from rg, which is chosen so that the constant dof
areas for the circular orbit, is equal to the angular momentu

integral.J, = r2¢. From these equations we get

&ry 2 [t 9D, 8®,
L == —dt' — —
dt? TR 70 J_oo Op or
_,dn
C dt 9
t

. . 0P

(ro +71)2(Bo + 1) — Qg = */ éTpldtI

¢
d
—verd / —(;Qtl ar',

where|ry /ro| < 1 and|®;/®q| < 1 for all r andt.

Wy = Eplws| —i—, (38)

2
wherep = i for Jeans-unstable perturbations?(< 0) and
p = 1forJeans-stable onesj > 0), |w;| ~ Q,andv. < |w|.

Eq. (38) describes the weak damping of Jeans-stable pertur-
bations 3w, < 0. Such a stabilizing influence is quite obvious,
because in general the effect of collisions is to disrupt the or-
ganized wave motion (Alexandrov et al. 1984). Accordingly, as
a result of collisions, a Jeans-stable wave tends to be damped
on a timescale of the order of the mean time between colli-
sions~ 1/v,. Clearly, however, these rame, < 2, and weak,

v. < |w,|, gravitational collisions between particles do not
affect the local stability criterions (2)—(3).

Itfollows from Eq. (38) that the collisional effects do not de-
end on the wavenumbér The latter contradicts our recent re-

msults obtained with the exact Landau integral of collisions (Griv

et al. 1997a). Therefore, gravitational collisions are poorly rep-
resented by an approximate method presented here. The results
obtained in this Appendix indicate only a tendency of Jeans-
stable perturbations to be damped in a colisional system, and
the damping rate given by Eq. (38) is correct only to the order
of magnitude.

Thus, it is found that rare and weak collisions between par-
ticles lead to the weak stabilization of Jeans-stable modes in a
stellar disk. The effect is small: the time necessary for the wave
amplitude to fall tol /e of its initial value; is about the colli-

siontime,v; 1. We have assumed ;| ~ Q andk2p? < 1. This
is much longer than the characteristic time of a single revolution

The homogeneous differential Egs. (33) and (34) yield ttef a disk~ Q! < v 1.

ordinary Lindblad’s elliptic-epicyclic orbits:

r = 19— %[Sin(gbo — Ht) — sin (bO]ﬂ

2Q)
Qt + —U—L[COS(% — Kt) — cos ¢p,
K Tok

4

According to observations, in the disk of the Galaxy the
frequency of gravitational collisions between stars and giant
molecular clouds/, ~ 1077 yr~! (Grivnev & Fridman 1990).
Therefore, even though the timgis longer than the characteris-
tictime of a single revolution of the Galaxy in the solar vicinity, it
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Rate of Change of the Mean Kinetic Energy of the Three Mass Groups

T T T T T T

is quite sufficient to damp the standard Lin-Shu quasi-stationary,
density waves on the Hubble tine ~ 100! ~ 101°yr. By
this way, the effects of even rare (and weak) encounters may’[

-1
-2

become essential. sl ]
-3

7L
A.3 Relaxation time in strictly two-dimensional simulations

cnergy
=]
T

Consider a system of mutual-gravitating particles. The local di
tribution functionsf (r, v, t) must satisfy the Boltzmann kinetic’
equation

of  ,.of 02 0f (0f ot
or Vor or av_(au)cou’ 39

where ®(r,t) is the total gravitational potential determined - B it
self-consistently from the Poisson equatid,f/0v)con o 5
ve(fo — f) is the so-called collisional integral which defines s ‘ . ‘ . ,
the change off arising from ordinary interparticle collisions, ° % 1 1% 2 28 e 0 4 8
v, is the collision frequency, ang, is the quasi-steady state
distribution function.

In plasma physics, Lifshitz & Pitaevskii (1981, p. 115) hav%1

Ay x 6\y, ande, = 1.5¢r; 1 —kinetic energy of stars with the mass

discussed phenomenainwhichinterparticle collisions are unim=, .. 16" 5" i the mass of a stam. . and 3 — with the mass

portant, and such a plasma is said to be collisionless (and in gf’% star0.55m;. The two groups of heavy stars lose kinetic energy
lowest-order approximation of the theory one can neglect tigiie the group of lightest stars gains an approximately corresponding
collision integral in the kinetic equation). It was shown that @mount of kinetic energy. The mean slope of the curves will result in
necessary condition is that < |w.|: then the collision op- energy equipartition after about 20 rotation periods. This result suggests
erator in the kinetic equation (39) is small in comparison witthat interparticle collisions do not play a significant role for instabilities
af /ot. In Appendix A.1, we have shown that generally speaktudied in the paper.
ing the frequency of collective Jeans-type oscillations in a stellar
disk |w.| ~ €. Therefore, in the gravitation case in the lowest-
order approximation of the theory we can neglect the effects of |n Sect. 3.1 of the present paper it has been found that the
collisions between particles on a timescale of many rotatiofgidly rotating disk becomes almost stable gravitationally for
if ve < Q. Lifshitz & Pitaevskii (1981) have pointed outthat, = 2 1 5., In such a Jeans-stable system collective effects
collisions may be neglected also if the particle mean free pathyigsociated with the classical gravitational instability will not af-
large compared with the wavelength of collective oscillationgsct the random velocity dispersion of particles (Griv etal. 1994;
Then the collision integral in Eq. (39) is small in comparisogyiy ¢ Peter 1996): the change of velocity dispersion can be
with the termv - (9f/0r). . . .explained only by usual two-body encount&f&or this reason

In this Appendix we test numerically if the models used ighe injtial condition was chosen to be a quasi-stable uniformly
our N-body simulations are being correctly modelled as clytating disk withe, = 1.5¢1. Following Hohl (1973), let us
lisionless Boltzmann (Vlasov) systems. The direct method gkfine the relaxation timeg as the time required for the mean
checking if the system is being modelled as a collisionless Sy$iange of the kinetic energy per unit mass of the test star to
tem is to repeat a calculation using a mass spectrum (Rybi@hium the initial kinetic energy.
1971). It is obvious that as a result of gravitational collisions " |, Fig. A1 we show the change of the ratio of the mean parti-
there is a tendency towards energy equipartition between H?@(kinetic) energy< m V2 >, < maV2 >, and< msV2 >
various masses. Hohl (1973) has determined the experimefialnits of the total kinetic energy of the system), for the dif-
relaxation time and compared it with a theoretical predictiG@rent mass groups, whefé is the total velocity of a given
for the collisional relaxation time of a two-dimensional diskyass group. As is expected, the two groups of heavy stars lose
by using the method of global simulations; here we do suchygergy while the group of lightest stars gains an approximately
comparison by using the method of local simulations. corresponding amount of kinetic energy. Also as is expected,

Let us consider the strictly two-dimensional comput§gne can see the decrease in the change of the kinetic energy
model consisting 0% stars of massu; = 10m,;, 18% stars of - ith time. This is because the collisional frequengys 1/75
massny = 2m., ands0% stars of massu; = 0.55m;. Theto- s inversely proportional to the velocity dispersion (Eq. [12]),
tal number of stars, which are distributed in the rectangular box
with Ly x Ly = 4A; x 6A;, is small,N' = 2400, in compari- 12 |, 3 plasma, it has already been known that the rate of relaxation
son with the number of stars in simulations presented in Sectigivard equilibrium can be greatly enhanced by collective processes
Initially, the different mass groups of stars are distributed witlulsrud 1972; Alexandrov et al. 1984, p. 408; Krall & Trivelpiece
the same velocity dispersion (with different temperatures). 1986, p. 512).

o
T

mean kineti
£
T

Fig. Al. Rate of change of the mean kinetic energy for stars of the three
ass groups of the rigidly rotating model with = 2400, L, X L, =
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and thus the encounters only weakly affect the stars with higlohl F., 1972, J. Comput. Phys. 9, 10

random velocities.

As one can see, the mean slope of the curves show

Hohl F., 1973, ApJ 184, 353

nHehl F., 1978, AJ 83, 768

Jog C.J., 1996, MNRAS 278, 209

Fig. Al will result in energy equipartition after about 20 rog o, N.A., Rosenbluth M.N., 1963, Phys. Fluids 6, 254

tation periods. It is crucial to realize that these relaxation timgsga| N.A., Trivelpiece A.W., 1986, Principles of Plasma Physics. San
even for this relatively small number of model stars are much Francisco Press

longer that the time of a single disk revolution. We concludgulsrud P.C., 1972, In: Lecar M. (ed.) GravitatiodétBody Problem.
that the two-dimensional computer models used in the presentReidel, Dordrecht, p. 337

study may indeed be considered as collisionless onestoa g
approximation at least during the first 8—10 rotations which areg,

bagfau R.W., Neil V.K., 1966, Phys. Fluids 9, 2412
Lane A.L., Hord C.W., West R.A., et al., 1982, Sci 215, 537
uY.Y., Bertin G., 1978, ApJ 226, 508

of especial interest in spiral-galaxy simulation. Therefore, Wes A w., Edwards S.F., 1972, J. Phys. C 5, 1921
argue that the collective effects studied in this paper were ajfshitz E.M., Pitaevskii L.P., 1981, Physical Kinetics. Pergamon,

parent before the collisional timescale was reached.
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