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Abstract. ComputerN -body experiments are desribed which
test the validities of the original Toomre’s (1964) criterion and of
a generalized criterion for local stability of Jeans-type perturba-
tions in a self-gravitating, infinitesimally thin, and practically
collisionless disk of stars. The fact that the nonaxisymmetric
perturbations in the differentially rotating system are more un-
stable than the axisymmetric ones is taken into account in this
generalized criterion. It is shown that for differentially rotat-
ing disks, the generalized criterion works as well as Toomre’s
ordinary criterion does for rigidly rotating ones.

A modest discrepancy is observed between the analytical
stability criteria and the numerical results. We tentatively at-
tribute this to the shortcomings of the asymptotic density wave
theory and possibly additional ones introduced by approxima-
tions in the local numerical code employed here. In addition,
the linear stability theory of small oscillations of a disk of stars
is reexamined by using the method of particle orbit theory. This
representation gives new insight into the problem of gravitating
disk stability. Certain applications of the theory and theN -body
simulations to actual disk-shaped spiral galaxies are explored
as well.
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1. Introduction

1.1. Local stability criterion

Spirals are common in rapidly (and nonuniformly) rotating
galaxies. The origin and maintenance of the spiral structure of
such highly flattened systems has proved to be a difficult prob-
lem in galactic dynamics. Even though no definitive answer can
be given at the present time, the study of the stability of small-
amplitude waves in disk-shaped galaxies of stars is the first step
towards an understanding of the phenomena. This is because in
the Milky Way Galaxy and many other giant galaxies the bulk
of the optical mass, probably

>∼ 90%, is composed of stars, and
therefore stellar dynamical phenomena play a basic role.
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More than three decades ago, Lindblad (1963, and earlier
references) proposed that spiral arms of a galaxy are quasi-
stationary density waves propagating through differentially ro-
tating parts of a collisionless disk of stars with a constant phase
velocity. Subsequently, Lin & Shu (1966), Lin et al. (1969), Shu
(1970), and others (e.g., Nakamura et al. 1975) further devel-
oped the density wave theory by studying collective effects in
self-gravitating stellar systems; see reviews by Toomre (1974,
1977) and Athanassoula (1984). It seemed reasonable to at-
tribute galactic spiral arms to Lin-Shu type small-wavelength
density waves driven by the classical Jeans instability in a
rapidly rotating system of young, dynamically cold stars.

Initially, in the asymptotic Lin-Shu density wave theory of
tightly-wound spirals, important effects of the azimuthal gravi-
tational forces in nonuniformly rotating systems were not prop-
erly taken into account. As a result of this simplification, the
well-known Toomre’s (1964) local criterion for stability against
only axially symmetric(radial) Jeans-type perturbations of the
gravitational potential can be derived from the original Lin-Shu-
Kalnajs dispersion relation (Lin & Shu 1966; Lin et al. 1969;
Shu 1970; Toomre 1977).1

The original Toomre’s criterion states that the radial residual
(random)-velocity dispersion of starscr, which is proportional
to the square root of the “temperature” of the system, will sup-
press the axisymmetric Jeans perturbations in the rapidly rotat-
ing, nearly homogeneous, and very thin (h/2 � R, whereh is a
typical thickness andR is a characteristic radius of the system)
disk, if

cr ≥ cT ≡ 3.4Gσ0

κ
. (1)

In Eq. (1),G is the gravitational constant andσ0 is the equilib-
rium surface mass density. The local epicyclic frequencyκ(r)
is given byκ = 2Ω [1 + (r/2Ω) (dΩ/dr)]1/2 where the quan-
tity Ω(r) denotes the angular velocity of rotation at the distance
r from the galactic center. The epicyclic frequency decreases
from 2Ω for the rigid body rotation toΩ for the Keplerian one.

1 In plasma physics an instability of the Jeans type is known as
the negative-mass instability of a relativistic charged particle ring or
the diocotron instability of a nonrelativistic ring that caused azimuthal
clumping of beams in synchrotrons, betatrons, and mirror machines
(Landau & Neil 1966; Nocentini et al. 1968; Davidson 1992).
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The disk with the velocity dispersioncr = cT is on the verge of
the gravitational Jeans-type instability with respect to the short-
scale,� R, purely radial or ringlike perturbations only. The
local criterion (1) gives a necessary condition for radial stabil-
ity. It does not obviously address the stability of nonaxisymmet-
ric, relatively large-scale modes,

<∼ R, particularly open spiral
modes in the bar form of the differentially rotating (dΩ/dr /= 0)
disks.

In a series of papers Morozov (1980, 1981a, 1981b) ex-
tended the works of Toomre (1964), Lin & Shu (1966), Lin et
al. (1969), and Shu (1970) by including the azimuthal forces.
It was demonstrated by Morozov that the presence of the dif-
ferential rotation (or shear) results in quite different dynamical
properties of the axisymmetric and nonaxisymmetric (spiral)
perturbations. A dispersion relation for arbitrary perturbations
which propagate in the plane of a differentially rotating stellar
disk is derived using a kinetic approach. This generalized Lin-
Shu type dispersion relation leads to the following modified
local stability criterion obtained by Morozov:

cr ≥ cM ≡ cT
{
1 +

[
(2Ω/κ)2 − 1

]
sin2 ψ

}1/2
, (2)

where the condition2Ω/κ > 1 always holds in the differentially
rotating system. In flat galaxies,

(2Ω/κ)2 − 1 ≈ −(r/2Ω)(dΩ/dr),

|(r/2Ω)(dΩ/dr)| < 1, anddΩ/dr < 0. The pitch angleψ
between the direction of the wave front and the tangent to
the circular orbit of a star in Eq. (2) isψ = arctan(m/krr),
where the nonnegative azimuthal mode numberm is the num-
ber of spiral arms, whilekr and kϕ ≡ m/r are the radial
and the azimuthal wavenumbers, respectively. The parameter{
1 +

[
(2Ω/κ)2 − 1

]
sin2 ψ

}1/2
is an additional stability pa-

rameter which depends on both the pitch angle and the amount
of differential rotation in the galaxy (cf. the parameterJ intro-
duced by Lau & Bertin 1978, Lin & Lau 1979, and Bertin 1980,
1994).

It is clear from the modified criterion (2) that in a nonuni-
formly rotating disk, namely when2Ω/κ > 1, for nonaxisym-
metric perturbations (ψ /= 0) the modified velocity dispersion
cM of a marginally Jeans-stable system is larger thancT (al-
though still of the order ofcT ). Moreover, Morozov took into
account the additional weak destabilizing effect of a density
inhomogeneity, and stabilizing effects of a radial gradient of a
velocity dispersion and of a finite disk’s thickness. The result is
that these effects practically cancel out each other, at least in the
solar vicinity of our own Galaxy. In the present study, we there-
fore neglect these small corrections. In addition to Morozov’s
studies, Griv (1992) has obtained a value of critical dispersion to
the next leading order in the asymptotic expansion by including
higher-order terms in the epicyclic amplitude. Recently, Griv
(1996) and Griv & Peter (1996) clarified the basic assumptions
of the asymptotic approximation and rederived the criterion (2)
by using the kinetic approach. A relationship exists between
Eq. (2) and what Toomre (Toomre 1981; Binney & Tremaine
1987, p. 375) called “swing amplification” in which the mate-

rial at radiusr0 is pulled forward by the azimuthal forces of the
material arr < r0 that it trails.

Apparently, Toomre (1964, p. 1222) first noted the different
dynamical properties of perturbations with differentψ in the
nonuniformly rotating stellar disk. Later the destabilizing effect
of the azimuthal forces has been studied using an analysis based
both on a gas dynamical model by Lau & Bertin (1978) and Lin
& Lau (1979), and a stellar dynamical model by Bertin & Mark
(1978) and Bertin (1980) by using an improved potential the-
ory. They have explained the physical origin of the difference
between radial and spiral perturbations in a nonuniformly rotat-
ing system, e.g., Lau & Bertin (1978, p. 509). Briefly, in order to
fit in with the gravitational field in flat systems, galactic rotation
has to be differential and such shear has important kinematic and
dynamic consequences. They pointed out that the generalized
stability criterion in the form of Eq. (2) takes properly into ac-
count the combined influence of self-gravity, thermal motions,
shear, and azimuthal forces. The reader should consult Lau &
Bertin (1978), Bertin (1980, 1994), and Lin & Bertin (1984) for
a detailed discussion of the problem. Recently, the problem has
been nicely reviewed by Polyachenko & Polyachenko (1997).
Note only that the free kinetic energy associated with the dif-
ferential rotation of the system under study is only one possible
source for the growth of the energy of these spiral Jeans-type
perturbations, and appears to be released when angular momen-
tum is transferred outward.

As one can see from Eq. (2), the modified critical velocity
dispersioncM grows withψ. Consequently, in order to suppress
the most “dangerous,” in the sense of the loss of gravitational
stability, nonaxisymmetric perturbations in a form of a bar (ψ →
90◦), cr should obey the following generalized criterion:

cr ≥ cG ≡ 2Ω
κ
cT . (3)

One should keep in mind that Eq. (3) is clearly only an approxi-
mate one, since it was obtained in the framework of the moder-
ately tightly-wound Lin-Shu perturbations approximation (Lin
& Lau 1979; Griv 1996; Griv & Peter 1996). Strictly speaking,
the above expression (2) forcr cannot be used when the pitch
angle is large, since in the asymptotic theory it is necessarily
assumed that

tan2 ψ � 1. (4)

The condition (4) limits the analysis of the actual low-m galax-
ies (in the standard Fourier analysis of the azimuthal coordi-
nate) withm < 5–7 to a consideration of disturbances with a
pitch angle smaller than about45◦ only (Lin & Lau 1979; Griv
& Peter 1996). Such a requirement naturally arises within the
WKB approximation we are interesting. Polyachenko (1989)
and Polyachenko & Polyachenko (1997) tried to find a stability
criterion for arbitrary localized perturbations beyond the limita-
tion of the WKB approximation by considering a hydrodynam-
ical model. Note, however, for the disk with flat rotation curve
at least, Polyachenko’s marginal stability condition and (3) are
practically coincidental.

Although the expression (2) only indicates the tendency of
growth of the critical dispersion with increasingψ, it is clear that
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the generalized criterion for the local stability of a stellar disk
against arbitrary Jeans-type perturbations (including the most
unstable barlike ones) should be approximately of the form of
Eq. (3). In this case, in a Jeans-stable differentially rotating disk,
the widely used Toomre (1964, 1977) critical stability param-
eter (which guarantees the suppression of arbitrary Jeans-type
perturbations in a rapidly rotating disk by the thermal velocities
of stars)

Qcrit =
ccrit
cT

, (5)

whereccrit is the critical radial-velocity dispersion, must be
greater than 1 and equal to about2Ω/κ. (Toomre’sQ-value is
a measure of the ratio of thermal and rotational stabilization to
self-gravitation and is defined below.) In particular, in a gravitat-
ing system with the Keplerian rotation (2Ω/κ = 2), Toomre’s
critical parameter isQcrit ≈ 2. In the case of the flat rotation
curve2Ω/κ =

√
2 and henceQcrit ≈ √

2 also. According to
Eqs. (2), (3), and (5), the value of Toomre’s critical stability pa-
rameter becomesQcrit = 1 only for arbitrary perturbations in
the rigidly rotating disk (2Ω/κ = 1) and/or for axisymmetric
perturbations in the differentially rotating one (Bertin & Mark
1978; Lau & Bertin 1978).

It is obvious that in differentially rotating galaxies, disks
manage to keep their local stability parameter close to the crit-
ical value,Qcrit ≈ 2Ω/κ ≈ 2 or cr ≈ (2Ω/κ)cT ≈ 2cT ,
respectively. In this case, once the entire differentially rotating
disk has been heated to valuescr ≈ 2cT , no further spiral waves
can be sustained by virtue of the Jeans instability – unless some
“cooling” mechanism is available leading to Toomre’sQ-value,

Q =
cr
cT
,

under approximately 2 or to the value ofcr smaller than approx-
imately2cT , respectively (e.g., by the dissipation in the gas and
accretion, and/or by the star formation in a “cold” interstel-
lar medium). By usingN -body simulations, first Hohl (1971)
and then, e.g., Sellwood & Carlberg (1984) and Griv & Chiueh
(1998), have already shown that the process of formation of new
dynamically cold stars, which move on nearly circular orbits,
plays a vital role in prolonging spiral activity in the plane of the
disk by reducing the random velocity dispersion of the entire
stellar component. Thus, the cold interstellar medium may play
a dominant role in determining the observed spiral structure in
galaxies because it is the site of the generation of new, dynam-
ically cold stars. In Saturn’s rings such a cooling mechanism
is also operating: inelastic physical collisions between particles
reduce the magnitude of the relative velocity of particles.2 Salo
(1992) already investigated numerically the role of the Jeans
instability mechanism in long-lived sculpting of Saturn’s rings
by including inelastic (dissipative) interparticle impacts.

2 Common dynamical processes act in the stellar disks of flat galax-
ies and in a planetary rings system of mutual-gravitating particles
(Tremaine 1989).

1.2. Physics motivation

The value of Toomre’s stability parameterQ is critically im-
portant for any gravitational theory of spiral structure in galax-
ies (and for dynamics of planetary rings). The generalized lo-
cal stability criterion as well as Toomre’s criticalQ-value has
been discussed at length by Morozov (1980, 1981a, 1981b),
Polyachenko (1989), and recently by Griv (1996), Griv & Peter
(1996), and Polyachenko & Polyachenko (1997). Surprisingly,
their ideas on the generalized local stability criterion have not
attracted a great deal of attention, and other explanations were
involved to confront the observations andN -body simulations.
For instance, Bertin & Romeo (1988) invoked the destabiliz-
ing effect of a sufficient amount of cold interstellar material to
explain the observed large value of the parameterQ for NGC
488. Although this explanation can be accepted for the gas-rich
galaxies, it certainly cannot be universal. For example, Cinzano
& van der Marel (1994) showed that even in such a gas-poor
spiral galaxy like NGC 2974, sometimes classified as E4, theQ
value considerably exceeds unity, and probably is larger than 3.
The problem seemed so complicated that Bottema (1993) even
claims that it is very difficult to relate the pure observational
results, thatQ between 2 and2 1

2 over a large range of galactic
disks, to any existing theoretical concept.3

Recently, the dynamical behavior of weakly collisional,
planetary rings system has been studied via anN -body sim-
ulation (Osterbart & Willerding 1995; Salo 1992, 1995). It was
found that the stability numberQ of Toomre in relaxed equilib-
rium disks does not fall below a critical value, which lies about
Qcrit = 2–2.5. No adequate explanation of the latter fact has
been presented. (Interestingly, observational data on the Satur-
nian rings system, obtained with the Voyager 2 spacecraft, have
indicated about the same value ofQ ≈ 2 for the densest B ring;
Lane et al. 1982, p. 543.)

We conclude that even though the criterion for local stability
in a gravitating, rapidly rotating particulate disk is a relatively
old issue in galactic and planetary rings dynamics, it is necessary
to address the problem again. In the present work, we turn to
studies of localized gravity perturbations by using bothN -body
simulations and an analytical approach. The linear disk’s sta-
bility theory is reexamined and conditions which guarantee the
lack of all Jeans-type unstable perturbations in a disk of stars
are found. We restrict ourselves to the simplest case of prac-
tically collisionless stellar system which is spatially homoge-
neous and two-dimensional. The effects of inhomogeneity and
three-dimensional motion will be investigated in a forthcoming
paper.

The main objective of the current work is to check the gener-
alized local stability criterion (3) numerically using the method
of direct many-body simulations. Moreover, the dispersion rela-
tions (9) and (20) of Morozov (1980) and Griv & Peter (1996),

3 Jog (1996) obtained the criterion for local stability against gravity
perturbations in gravitationally coupled stars and gas in a galactic disk
by treating the stars and gas as two isothermal fluids. Again, the stability
of a disk only with respect to axisymmetric perturbations has been
studied.
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respectively, and the stability criterion (3) obtained in the frame-
work of the linear kinetic theory do not reveal what kind of struc-
ture can emerge due to the gravitational instability. Simulations
should be able to identify these structures. As is thought, a very
simple model should be taken in the numerical work to compare
the analytical stability criterion with the one obtained numeri-
cally (see the next section of the paper). In addition, for the sake
of completeness in Appendix A.1 of the current paper the local
stability criteria (2) and (3) are rederived by employing the La-
grangian formalism of magnetized plasma theory which deals
with similar problems. In our theory, the simplest theoretical
method of plasma physics is used. This is the so-called method
of particle dynamics (or particle orbit theory) in which the mo-
tion of an “average” star-“particle” is considered (Rosenbluth
& Longmire 1957; Alexandrov et al. 1984, p. 46). The essential
part of the method is to regardρ/r0 as a small parameter and to
expand the solution in terms of it, whereρ is the mean epicyclic
radius of the star andr0 is the epicyclic center (the guiding center
in plasma physics) displacement from the galactic center.

Occasionally doubts have been raised about the validity of
strictly two-dimensionalN -body simulations of stellar disks of
galaxies (White 1988; Romeo 1997). For example, White (1988)
found a few computer models in the exactly planar simulations
which are probably affected by noise and two-body relaxation
(see, however, Hohl 1973). The physical effect of relaxation
in the N -body simulations is to generate viscosity and heat
conduction. One obvious effect of short-term relaxation is a
heating of the disk, and therefore some of the two-dimensional
N -body simulations probably cannot be trusted (White 1988).
We show, however, in Appendix A.2 of the present work that
in general the effect of such rare,νc � Ω, say,νc ∼ 0.01Ω,
elastic gravitational collisions (encounters) is very small, and
may be important only on a timescale of the order of the mean
time of many galactic rotations, typically∼ 100 rotations. Here
νc is the effective frequency of interparticle collisions. Thus,
two-body relaxation effects in suchN -body models probably
do not yield any interesting physics on a timescale of several first
rotations when the gravity perturbation may be already large as
a result of Jeans instability, i.e., in weakly collisional systems
with νc � Ω the collective effects may be apparent before the
collisional timescale is reached.

In Appendix A.3 of the present paper, following Rybicki
(1971) and Hohl (1973), we shall use an experimental method
of testing a computational procedure by repeating calculations
using a mass spectrum. The latter would clearly show whether
computations are sensitive to the undesirable particle relaxation
effects.

The organization of the paper is as follows. In Sect. 2 the
details of the numerical simulation model are discussed. The
results of computer simulations are shown in Sect. 3 and com-
pared with the predictions of the basic theory as outlined in
Appendix A.1. Sect. 4 is devoted to a discussion of the principal
results of the work and their application to observational data.
Through Appendix A.2 the effect of interparticle encounters on
the dispersion law of Jeans perturbations is estimated. In Ap-

pendix A.3 we check if the system is being correctly modeled
as a collisionless Boltzmann (Vlasov) system.

2. Numerical experiments: descriptions

Simulations of galaxies of stars can be divided into two basic cat-
egories: global and local. The former have been done to simulate
the global dynamics and the development of large-scale spiral
and bending structures (Hohl 1971, 1972, 1978; Sellwood &
Carlberg 1984; Grivnev 1985; Peter et al. 1993; Griv & Chiueh
1998). Certainly, some aspects of dynamical behavior of stellar
systems can be studied by global simulations only (nonlinear
effects, etc.). An obvious shortcoming of the global simulation
approach is that the numbers of stars in a simulation is orders
of magnitude smaller than in a typical galaxy. This might not
permit revelation of the small-scale∼ ρ spiral structure (see
Appendix A.1 of the present paper). Hereρ ≈ cr/κ is the mean
epicyclic (Coriolis) radius (Larmor radius in magnetized plas-
mas, respectively). As a rule, in spiral galaxiesρ ∼ 0.5 kpc, and
ρ

>∼ h andρ � R.
On the other hand, to study some aspects of particulate disk

dynamics when inhomogeneity is relatively weak, a different
numerical approach may be taken: localN -body simulations.
The latter galacticN -body experiments in a local or Hill’s ap-
proximation has been pioneered by Toomre (1990) and Toomre
& Kalnajs (1991). In these simulations dynamics of particles
in small regions of the disk are assumed to be statistically in-
dependent of dynamics of particles in other regions. The local
numerical model thus simulates only a small part of the system
and more distant parts are represented as copies of the simulated
region. Wisdom & Tremaine (1988) applied the same numeri-
cal technique in studying the equilibrium properties of planetary
rings. In addition, Salo (1992, 1995) and Griv (1997) studied the
dynamical behavior of collisional self-gravitating rings systems
by using the same method. In contrast to global simulations, in
local ones complicated effects of disk inhomogeneity and finite
thickness may be studied separately. This is the main reason
why in the present work the localN -body simulations are used.
In our opinion, this simple model is useful for clarifying the
physics of the phenomenon, and provides us with results which
can serve as a convenient starting point for more complicated
theory and numerical simulations.

In fact, Morozov (1981a) has already attempted to confirm
the criterion (3) numerically. However, because of the very small
number of model stars,N = 200, Morozov’s results are sub-
ject to considerable uncertainties, and additional simulations are
clearly required to settle the issue. Furthermore, for that number
of particles, the two-body relaxation timescale is comparable to
the crossing time, even with Morozov’s modest softening pa-
rameter, raising some question about the applicability of his
simulations to actual almost collisionless galaxies. Increasing
the number density of model stars is definitely a more reliable
procedure. This paper presents the results of such simulations.

Since Chandrasekhar’s (1960) fundamental “molecular-
kinetic” studies, in stellar systems such as the solar vicinity
of our own Galaxy, binary star-star encounters are well recog-
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nized to have no influence on the evolution. That is, if other
perturbations were absent the motion of a star in its orbit in the
regular gravitational field of a galaxy would be determined at
every moment of time by the initial conditions that prevailed
when the star was “born.”4 Thus, in sufficiently dynamically
hot and rarefied stellar systems of flat galaxies interparticle col-
lisions can be neglected on the timescale of interest

<∼ 100Ω−1,
where in galaxiesΩ−1 ∼ 108 yr. Then, the equations of motion
for an individual star of unit mass in the inertial frame with the
origin at the disk center have the form (Chandrasekhar 1960,
chap. 3):

d2r

dt2
= r(ϕ̇)2 − ∂Φ0

∂r
− ∂Φ1

∂r
, (6)

d

dt
(r2ϕ̇) = −∂Φ0

∂ϕ
− ∂Φ1

∂ϕ
, (7)

where theϕ̇ indicates time derivatives ofϕwith respect to time.
Here and belowr, ϕ, andz are the galactocentric cylindrical
coordinates and the axis of the galactic rotation is along thez-
axis. In the equations above, the gravitational potential has been
divided into the smoothed partΦ0(r) satisfying the equilibrium
condition

∂Φ0

∂r
= rΩ2, (8)

and the fluctuating small perturbationΦ1(r, t) with |Φ1/Φ0| �
1 for all r andt.

As has been mentioned, the local simulation has been devel-
oped by Wisdom & Tremaine (1988), Toomre (1990), Toomre
& Kalnajs (1991), and Salo (1992, 1995). Following them, let
us assume that the radial extent of any region of interest is much
smaller than its distance from the center of rotation and any rel-
ative motion is only a small fraction of the full rotation velocity.
In such a model, the linearized Newtonean Eqs. (6) and (7) in
Hill’s approximation can be rewritten in the suitable form:

d2x

dt2
− 4ΩA0x− 2Ω

dy

dt
= −Fx, (9)

d2y

dt2
+ 2Ω

dx

dt
= −Fy. (10)

In the equations above,

x = r − r0, y = r0(ϕ− Ωt),

r0 is the reference radius,Ω = Ω(r0), and A0 =
−(r0/2)(dΩ/dr)0 is the first Oort constant of the differential
rotation which is a measure of the shear strength. In actual galax-
ies 0 < A0 < (3/4)Ω and typicallyA0 ' 0.5Ω. In general,
−Fx and−Fy are the forces due to interactions with other stars.
The gravitational forces are

4 On the other side, the modern observational data convincely in-
dicate the presence of a strong perturbative mechanism disturbing the
stellar orbits; see Binney & Tremaine (1987, p. 470) as a review of the
problem. The majority of the experts in the field is yield to the opinion
that this dynamical relaxation may be explained naturally by collective
interactions of stars with unstable density waves.

Fi = −Gm2
s

N∑
j /=i

ri − rj
[(ri − rj)2 + r2cut]3/2 ,

whereri is the position of thei-th particle,rj is the position
of the j-th particle, andms is the mass of a particle. The cut-
off radiusrcut of the potential was introduced in order to avoid
numerical difficulties caused by rare very close encounters be-
tween the model particles. This “softening” parameter reduces
the interaction at short ranges and puts a lower limit on the size
of the model stars, i.e., the stars in the system can no longer be
considered as point-masses – they are in fact Plummer spheres
with a scale sizercut. In addition, a sufficiently high value of
rcut makes the two-dimensional system a “collisionless” one
(see below). Of course, the linearized equations of motion (9)
and (10) are valid only if|x| � r0. Such equations do not allow
for investigation of nonlinear effects, the such as the well-known
(in plasma physics) quasilinear collective-type relaxation.

The system of equations of motion (9)-(10) forN identical
particles was integrated by the standard Runge-Kutta method
of the fourth order. A rotating Cartesian coordinate system with
origin at the reference positionr0 was chosen, thex axis point-
ing radially outward, and they axis pointing in the direction
of the rotation (for details see Toomre 1990 and Salo 1995).
The particles were initially placed on nearly circular orbits with
an anisotropic Schwarzschild distribution of small radial and
azimuthal random velocities components. The last statement
means that according to the set of equations (16) and (17) of
Appendix A.1, the ratio of the velocity dispersions in the az-
imuthal and the radial directions (in the rotating frame we are
using) is given by (Spitzer & Schwarzschild 1953)
cϕ
cr

=
κ

2Ω
.

This is close to that observed in the solar vicinity of the Galaxy.
In conformity with observations we set the Gaussian distribution
of small random velocities along each coordinate in momentum
space both in the theory and in the numerical experiments. Thus,
equilibrium is established in a simple manner in such disks, i.e.,
it is governed mainly by the balance between the centrifugal
and gravitational forces. It is this metaequilibrium that is to be
examined for stability by local simulations.

The initial distribution of stars (xi, yi) was generated by
means of pseudo-random number generator placing particles
uniformly in the box in real space. The box should be thought
of as being embedded in a galactic disk which has a constant
angular velocity gradient in thex direction, that is, the velocities
obey initially a linear shear profile, the stationary solutionvi,x =
ṽi,x, vi,y = −2A0xi + ṽi,y, whereṽi,x andṽi,y are the random
velocities in thex-direction andy-direction, respectively. To
maintain the system under the shearing stress in a steady state,
the cyclic boundary conditions are used in the form suggested by
Wisdom & Tremaine (1988) and Salo (1995).5 A star leaving

5 The “sliding brick” technique of Wisdom & Tremaine (1988),
Toomre (1990), Toomre & Kalnajs (1991), and Salo (1995) has been
used in the past to simulate transport properties of simple fluids under
the action of a strong shearing force (Lees & Edwards 1972; Evans &
Morriss 1984).
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the computational domain at one side will enter again at the
opposite side with the suitable velocity components.

In all the experiments reported in this paper, we have taken
the box to be rectangular,Lx × Ly = λJ × λJ , 4λJ × 6λJ ,
5λJ × 5λJ or 6λJ × 8λJ , whereλJ = 4π2Gσ0/κ

2 is the
ordinary Jeans-Toomre radial wavelength (Toomre 1964, 1990).
The direction of the disk rotation was taken to be clockwise and
units are such thatGm2

s = 1. Timet = 1 corresponds to a single
revolution of the disk, and the orbital period isTorb = 2π/Ω.
All the particles move with the same constant Runge-Kutta time
step∆T = 0.001Torb. We did not included any artificial extra
damping force on the right side in Eqs. (9) and (10) suggested
by Toomre (1990) to reduce the computational time.

In our simulations (within the local simulation technique),
a particle at (x, y) has images at (x ± lLx, y ± p2A0LxΩt ±
sLy), wheret is the time and the values ofl, s, andp were
chosen to be equal 1 (Wisdom & Tremaine 1988; Toomre 1990).
Gravitational forces on a given target particle are calculated
from all the other particles whose nearest image lies within
the distancermax ≤ 1

2 min{Lx, Ly} (Salo 1995, Fig. 1 in his
paper). Then, more distant images|l|, |s|, and|p| > 1 do not
contribute to gravitational forces.

Within the simple molecular-kinetic theory by Chan-
drasekhar (1960, chap. 2), the classical collisional relaxation
time for a three-dimensional system,

τ ≈ c3

2πG2m2
fnf ln Λ

, (11)

should be replaced by the collisional relaxation time in a two-
dimensional system (Rybicki 1971; Hohl 1973; Grivnev 1985):

τ ≈ c3δ

πG2m2
fnf

. (12)

Herec is the averaged velocity dispersion,δ is the minimum im-
pact parameter,mf is the mass of a field particle, andnf is the
two-dimensional (Eq. [12]) or the three-dimensional (Eq. [11])
number density of field particles. Alsoln Λ is the so-called New-
ton’s (or Coulomb’s in plasmas) logarithm, by means of which
the long-range nature of the gravitational force is taken into
account. In galaxiesln Λ ≈ lnN , andN is the total number
of field particles (Binney & Tremaine 1987, pp. 187 and 420).
Theis (1998) has presented semi-analytical calculations for the
two-body relaxation in softened potentials based on a Plummer
mass distribution and compared these calculations withN -body
simulations. It has been shown that with respect to a Keplerian
potential the increase of the relaxation time given by Eq. (11) in
the modified potentials is generally less than one order of mag-
nitude, typically only between 2 and 5, if the softening length
is of the order of the mean interparticle distance. Consequently,
we expect that the expressions (11) and (12) for the time of
two-body relaxation in the case of the softenend potential we
are using, are correct at least to the order of magnitude.

In contrast to three-dimensional models, the collisional re-
laxation time for exactly two-dimensional computer models
being calculated from Eq. (12) is very short, of the same or-
der as the rotation period (Rybicki 1971). However, Rybicki

(1971) has already been pointed out that fortunately numerical
calculations are themselves subject to further approximations,
and a discretization effect minimizes the difficulty with relax-
ation time. Indeed, in contrast to the three-dimensional case
(Eq. [11]), there is no Newton’s logarithm in the expression
(12) for the relaxation time via the binary encounters in a two-
dimensional system. On the other hand, in a two-dimensional
system, encounters with small impact parameters play the main
role for collisional relaxation,τ ∝ δ; consequently, in two-
dimensional systems there is no problem with the maximum
impact parameter (in plasma physics the upper limit is the De-
bye radius). It is natural therefore to setδ = rcut in Eq. (12)
[Grivnev 1985]. Clearly, by choosing a sufficiently large value
of δ, one can construct a two-dimensional model which is prac-
tically collisionless on the timescale of interest.

It is very important to realize that the numerical model
of a galaxy should properly simulate almostcollisionlesssys-
tems. According to Eq. (12), a way to achieve this in a two-
dimensional system is to reduce the gravitational attraction at
short distances so that the relaxation timeτ � Torb. Other-
wise, as it was shown by Griv & Peter (1996), Griv & Chiueh
(1996), Griv & Yuan (1996), and Griv et al. (1997a) in a disk
with frequent collisions, in whichτΩ � 1, another secular
dissipative-type instability may develop effectively. This dissi-
pative instability may produce structures completely unrelated
to the effects we would like to model (e.g., Sterzik et al. 1995).

Eq. (12) indicates that our two-dimensionalN -body system
will remain practically collisionless for more than several rev-
olutions, if cr ≥ 0.2cT , δ ≡ rcut ≥ 0.03λJ , andN ≥ 2000.
In this case, in the lowest approximation one does not need to
include the effect of interparticle collisions in the calculation of
the accelerations on the right-hand sides of Eqs. (9) and (10).
Below we describe the results of simulations of different com-
puter models containing a sufficiently large number of particles
N = 2400–6480 (and withc ≥ 0.2cT ).

The value ofrcut was chosen to be0.03λJ , but the results are
not sensitive to the choice ofrcut in the range(0.005–0.05)λJ .
(Note that such a value ofrcut does not suppress the axisymmet-
ric Jeans instability if random motions are completely absent;
see Toomre 1990 for an explanation.) We did not find any de-
pendence of critical stability criterion on the amplitude of the
smoothing parameter (in the rangercut = 0.005–0.05) as ad-
vocated recently by Romeo (1997).

Summarizing, similar to actual galaxies of stars our model
is a collisionless one to a good approximation at least on a
timescale of severalTorb.

In all the experiments the simulation had been performed
up to a timet = 3, but we shall present snapshots for times
t < 1 only, since after the first rotation the system is always
stabilized and no further rapid evolution is visually detectable.
We performed a few runs for systems containingN = 20 000
model stars and for smaller systems containing onlyN = 2000
ones. It was found that the results obtained for those systems
are qualitatively indistinguishable: we did not detect in our ex-
periments any dependence of the typeℵ ∝ N−1/2, whereℵ
is the amplitude of the density variations. The last is clearly
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inconsistent with Toomre’s (1990) hypothesis that the spirals
observed in local simulations can be explained by the swing-
amplified particle noise (“spiral chaos in an orbiting patch” or
“kaleidoscope of chaotic arm features” which are responses to
the random density irregularities orbiting within the particulate
disk). In the following discussion we advocate a way to de-
scribe the rapidly evolving structures, such as those reported in
the simulations (Sect. 3), in terms of local true instabilities of
Jeans-type perturbations.

We claim that our numerical results are insensitive to the
value ofN at least in the range2000–20 000 and therefore two-
body relaxation effects are not important. Also we did not find
any difference between the results of simulations with or without
applying the so-called quiet starts procedure to select the initial
coordinates of particles. The methods of quiet starts were de-
veloped first in plasma simulations by Byers & Grewal (1970).
Basically, by applying the method of quiet starts, one uses no
random numbers in the initial conditions to suppress the noise
level in a system. Such techniques have proven useful in ob-
taining realistic noise levels without the use of a large number
of particles. Moreover, tests indicated that the results were in-
sensitive to changes in other gross parameters (the area of unit
cell, etc.). A test gives a good check on the numerical stability
of the code as well as the accuracy of the program; the code
conserves energy to within1%− 2% during the first 3 rotations
of the system.

3. Numerical experiments: results

In this section we report on the numerical study of the sponta-
neous appearance of the Jeans modes in a collisionless stellar
disk representing the disks of highly flattened galaxies. In par-
ticular, we focus on the random motion effect both in rigidly
rotating disks and in differentially rotating disks. The structures
that appeared in computer models are interpreted by us in terms
of the stability theory. It will be shown that the stability crite-
rion obtained in numerical experiments is close to the theoretical
generalized stability criterion (3).

3.1. Rigidly rotating disk

First the rigidly rotating disk was investigated. In Fig. 1 we show
a series of eight snapshots from a run with the cool model,
i.e., the rigidly rotating model,dΩ/dr = 0, in which stars all
move along almost circular orbits and the radial dispersioncr
of the random velocities is smaller than the critical Toomre’s
one, namelycr = 0.2cT , or Toomre’sQ-value is equal to 0.2,
respectively. As has been predicted in the theory (see the In-
troduction), the Jeans-type instability develops quickly in the
system during the time of the first rotation,∼ Ω−1. As one can
see from Fig. 1, the system’s evolution can be qualitatively di-
vided into three stages. At the beginning, at timest

<∼ 0.1 the
particle distribution in the (x, y)-plane is nearly random. Then
at timest ∼ 0.2 the linelike structures develop. At timest ∼ 0.4
most of the stars are accumulated inside the lines which form a
“honeycomb” network with large voids between the filaments.

Fig. 1.N -body (N = 6480) gravitational simulation snapshots at nor-
malized timest for the rigidly rotating disk model(2Ω/κ = 1) with
the radial dispersion of random velocities of particlescr = 0.2cT ,
wherecT is the marginal Toomre’s dispersion (Eq. [1]). The time here
and everywhere is normalized so thatt = 1.0 corresponds to a sin-
gle revolution of the disk. The direction of disk rotation is taken to be
clockwise. The box here as well as in calculations shown in Figs. 2–5
and 10–11 is taken to be rectangular,Lx × Ly = 6λJ × 8λJ , where
λJ is the ordinary Jeans-Toomre wavelength (Sect. 2). The system is
violently unstable to a gravitational mode with the wavelength∼ λJ .
These results agree with previous studies, and are the manifestation of
the classical Jeans instability in rapidly rotating disks.

The size of a typical void (or a typical distance between the
filaments) both in the radial direction and in the azimuthal di-
rection is∼ λJ , indicating that perturbations with wavelength
λJ have the fastest growth rate. Such a size of a void is in agree-
ment with the theory (Appendix A.1, Eq. [28]). To stress, the
analogy to honeycomb should not be taken too far since glob-
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Fig. 2.The rigidly rotating disk in which the usual Toomre’s condition
for stability toward axisymmetric perturbations, i.e.,cr = cT holds at
each point. The model is only weakly unstable with respect to Jeans-
type modes.

ally the filaments are quite randomly oriented and there is no
preferred direction. At the third, later stage, a tendency towards
what Toomre (1990) called “moon-making” is clearly seen in
Fig. 1 at timest > 2.0. That is, the lines disintegrate into several
pointlike “moons,” while voids are filled with few stars. It is in-
teresting to note that moon’s number density is approximately
1/λ2

J .
In the second set of experiments with the rigidly rotating

disk, we simulated a system which is stable according to Toomre
(1964):cr = cT or Q = 1, respectively. The evolution of the
model is shown in Fig. 2. In such a system this relatively high
temperature essentially reduces (but does not eliminate com-
pletely) the growth rate of the instability, i.e., the instability is
sensitive to Toomre’sQ-value. Now the disk is near the stability
threshold. Again, in agreement with the theory, the size of the
voids is aboutλJ and the number density of moons is∼ 1/λ2

J .
In the final experiment with the rigidly rotating system we

set att = 0 the velocity dispersioncr = 1.5cT (or Q = 1.5).
The results are shown in Fig. 3. The system becomes practically
stable. Therefore, we conclude that the critical dispersion is
near1.5cT . Why the disk is still unstable (more correct, weakly
unstable) whencr > cT but cr

<∼ 1.5cT , or 1 < Q
<∼ 1.5,

respectively, remains an open question; the modifications due
to the effect of azimuthal forces do not help in this case of rigid
rotation (Appendix A.1).

To summarize, computer configurations with increased ve-
locity dispersion change more slowly than their low velocity
dispersion counterparts. This result is consistent with the theo-
retical prediction (Eq. [30]).

Thus, Toomre’s local stability criterion is only reasonably
accurate in the case of the rigidly rotating disk, and the critical

Fig. 3. Snapshots from the evolution of the rigidly rotating disk with
cr = 1.5cT . In contrast to what one can see in Figs. 1 and 2, the
system now is practically stable with respect to all local gravitational
perturbations.

dispersionccrit might be a bit larger thancT . Although this value
of ccrit is in general agreement with the theory, it is also disap-
pointing that it is not exactly equal tocT . Strictly speaking, we
do not know the reason for such a larger value ofccrit, while it
might be attributed either to the linearization on the theory side
or the linearization on experiment side (Hill’s approximation).
We should note also that no better agreement can be expected
from the theory described in the Introduction and our greatly
simplified theory presented in Appendix A.1 (see, for exam-
ple, the approximate expressions for the Bessel functions). In
addition, one obvious shortcoming of the numerical procedure
used here is that gravitational forces on a given target particle
are calculated only from other particles whose nearest image
lies within the distancermax ≤ 1

2 min{Lx, Ly}. The accuracy
of such an approximation may need further investigation be-
cause the gravitational forces are the long range ones. Clearly,
in a more accurate model one also has to include more distant
images in the calculation of the gravitational forces.

3.2. Differentially rotating disk

In the current subsection the development of the Jeans instability
in the nonuniformly rotating disk,dΩ/dr /= 0, is studied. Figs. 4
and 5 clearly show that in a disk with the Keplerian shear profile
(2Ω/κ = 2) a fast nonaxisymmetric instability develops both
in a Toomre unstable system (cr = 0.2cT ; Fig. 4) and in a
Toomre stable one (cr = cT ; Fig. 5). A spiral pattern (more
accurately, a chainlike structure or “wakes”) develops rapidly
in the initially featureless disk on a dynamical timescale,∼
Ω−1. Unlike in the case of rigid rotation (Figs. 1 and 2), the
structure now consists of elongated trailing filaments. Note that
in agreement with the theory as described in the Introduction,
even Toomre’s stable nonuniformly rotating disk (in whichcr =
cT or Q = 1, respectively; Fig. 5) is still violently unstable to
spiral perturbations growing on a dynamical timescale. This
fierce instability of the system withcr = cT indicates that in a
differentially rotating system the instability of nonaxisymmetric
perturbations cannot be suppressed by the ordinary Toomre’s
critical dispersioncT .

The pitch angle of spiral wakesψ
<∼ 35◦, thustan2 ψ �

1 and the asymptotic Lin-Shu approximation of moderately
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Fig. 4. The differentially rotating disk with the Keplerian rotation
(2Ω/κ = 2) and the radial-velocity dispersioncr = 0.2cT . The model
is violently unstable against rapidly growing, trailing (ψ > 0) nonax-
isymmetric (spiral) perturbations (m andψ /= 0) of the Jeans type. A
typical radial distance between spiral filaments is∼ λJ ; the number
of filaments' βLx/λJ ≈ 12 (Eq. [29]). Notice the change in the
structure of the instability in compare with that seen in Figs. 1 and 2.

Fig. 5.The disk with the Keplerian rotation curve and dispersioncr =
cT . Even though the velocity dispersion is equal to Toomre’s critical one
cT , this differentially rotating model is still violently unstable against
Jeans-type modes.

tightly-wound perturbations used throughout the theory de-
scribed in the Introduction and Appendix A.1, does not fail.

In agreement with the theory (Eq. [30]), the disks become
progressively more stable as the initial velocity dispersion is in-
creased. This is clearly seen in Figs. 4 and 5: the spiral structure

Fig. 6a–d.The orientational correlator of particlesn(ψ) (Eq. [13]) vs.
the perturbation angle (in degrees) at the calculation timet = 0.5
for differentially rotating models with the velocity dispersion:a cr =
0.2cT , b cr = cT , c cr = (2Ω/κ)cT , andd cr = 1.5 × (2Ω/κ)cT .

in the cool model (Fig. 4) develops at timest ∼ 0.2 − 0.3 but
in the warm model (Fig. 5) it develops at somewhat later times
t ∼ 0.4–0.5, i.e., the structure in the simulation illustrated in
Fig. 5 is weaker and takes longer to form than in the equivalent
cooler model shown in Fig. 4. Hence, the growth rate of unsta-
ble perturbations in the warm model is smaller than the growth
rate in the cool model. This is a natural consequence of greater
random motions as is shown in the theory (Appendix A.1).

Also, as one can see visually in Figs. 4 and 5 these elongated
trailing filaments, which are similar to those found in spiral
galaxies, are very different from the “honeycomb” structures
which appear in rigidly rotating disks (Figs. 1 and 2). The former
definitely have a prefered directionψs. To quantitatively study
the breaking of the rotation symmetry we plot in Figs. 6a and
6b the orientational correlator of stars at the calculation time
t = 0.5 for models withcr = 0.2cT andcr = cT , respectively,
defined by

n(ψ) = 〈ni(ψ)〉 − 1
2π

∫ 2π

0
ni(ψ)dψ, (13)

where〈· · ·〉 denotes averaging over all the stars,ni(ψ) is number
of stars inside a segment aroundψ with distances not exceed-
ing rm = λJ (cf. the usual “friends-to-friends” method to find
groups in particle distribution). This value ofrm is chosen to
exhibit short range order: it is conveniently larger than the width
of the filaments but smaller than the scale on which filaments
develop the curvature. It seems, therefore, that the signal is opti-
mal. The peak at the valuesψs = 30◦ −40◦ is clearly seen both
for the model withcr = 0.2cT and forcr = cT . Moreover, in
the direction perpendicular toψs at the valuesψ = 120◦–130◦

one sees negative correlation.
Of course, we do not see a network of parallel equidis-

tant lines. So we cannot rely on the standard Fourier treat-
ment to analyze the structures seen in Figs. 4 and 5. One can
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Fig. 7a–d. The correlatorP (z) at the calculation timet = 0.5 for
differentially rotating models with the velocity dispersion:a cr =
0.2cT , b cr = cT , c cr = (2Ω/κ)cT , andd cr = 1.5 × (2Ω/κ)cT .

clearly see, however, that a characteristic distance between the
nearby (nearly parallel) lines is of order ofβλJ (Eq. [29]). As
for the present study, the latter fact convincingly indicates that
we have dealt with a gravitational instability rather than with a
random process. The translation symmetry in the directionψs

is clearly unbroken, while in the perpendicular direction a se-
ries of alternating peaks and dips is seen. To describe the latter
phenomenon quantitatively we calculated the correlatorP (z),
wherez = x cosψs + y sinψs andx, y are the coordinates of a
particle, in the directionψs+π/2. We counted the average num-
ber of starsP at the timet = 0.5 in strips of width∆ = Lx/30
aroundz; the results are presented in Fig. 7a–d. From Figs. 7a
and 7b one measures the average distance between nearby peaks
∼ βλJ in agreement with the theory (Eq. [29]). In the latter fig-
ures we see 5–6 dips and peaks. Peaks are clearly higher than
one standard deviation. This is above any possible noise and
shows a developing instability process. It is natural to attribute
the observed instability to the Jeans instability so far discussed
in the present paper.

To show another direct indication that it is so, we repeated
calculations with the nonuniformly rotating models of smaller
sizesLx × Ly = 5λJ × 5λJ , N = 5000, cr = cT andLx ×
Ly = λJ × λJ , N = 5000, cr = 0.2cT . The results of these
simulations are shown in Figs. 8 and 9, respectively. As one can
see, now in full agreement with the theory, the number of spiral
wakesnw is considerably smaller than with that in simulations
of theLx × Ly = 6λJ × 8λJ model (Figs. 4 and 5) but still
corresponds to the theoretical predictionnw ' βLx/λJ ≈ 10
(Fig. 8) andnw ' βLx/λJ ≈ 2 (Fig. 9).

We then simulated a differentially rotating disk which is
stable in accordance with the generalized local stability criterion
(3). Fig. 10 shows the observed evolution of the model with
cr = (2Ω/κ)cT . As can be seen, in contrast to the previous
simulations (Figs. 4, 5, 8, and 9) the model is indeed more stable
gravitationally. The orientational correlator of starsn(ψ) shows

Fig. 8. Time-development of the nonuniformly rotating model of stars
(2Ω/κ = 2) distributed over theLx × Ly = 5λJ × 5λJ unit cell,
N = 5000, andcr = cT .

Fig. 9. Time-development of the nonuniformly rotating model of stars
(2Ω/κ = 2) distributed over theLx × Ly = λJ × λJ unit cell,
N = 5000, andcr = 0.2cT . Notice the change in the number of spiral
wakes in Figs. 8 and 9 in compare with that seen in Fig. 4.

that the disk is near the stability threshold (Fig. 6c). This is
also seen quantitatively in Fig. 7c on which the correlatorP (z)
clearly has less structure on the standard deviation scale.

Finally, similar to the case of the rigidly rotating disk, the
value of the generalized stability criterion (3) should probably
be increased by the factor∼ 1.5. To prove this suggestion, in
Fig. 11 we show the evolution of the model withcr = 1.5 ×
(2Ω/κ)cT . As one can see in Figs. 6d, 7d and 11, now the model



E. Griv et al.: Local stability criterion for a gravitating disk of stars 831

Fig. 10.Evolution of the mildly unstable disk with the Keplerian rota-
tion curve and dispersioncr = (2Ω/κ)cT .

is practically stable.6 The contrast between Figs. 4 and 10, and
Figs. 4 and 11 establishes experimental evidence to support the
theory outlined in the Introduction and Appendix A.1.

We conclude that the basic theory explains the results of
localN -body simulations. That is, in order to suppress the in-
stability of arbitrary but not only axisymmetric Jeans-type grav-
ity perturbations in a differentially rotating stellar disk, includ-
ing the most unstable nonaxisymmetric perturbations in the bar
form, the value of the radial velocity dispersion must exceed
ccrit = α(2Ω/κ)cT , whereα ≈ 1.5. The latter will guarantee
lack of any exponentially increasing perturbations of the Jeans
type.

In closing of the subsection we would like make the fol-
lowing points. The Jeans-unstable perturbations in a disk grow
aperiodically: they are aperiodically shrinked (Eq. [27]). On the
other hand, Jeans-stable perturbations are not damped, so that in
the plane of the stellar disk the undamped waves can propagate
similar to magnetoacoustic waves in a plasma. It was the initial
idea of Lin & Shu (1966), Lin et al. (1969), and Shu (1970) to
explain the phenomenon of the spiral structure of galaxies by
these neutral waves which propagatae in the plane of a system.7

Griv (1996), Griv & Peter (1996), Griv & Yuan (1996), Griv
et al. (1997b), and Griv (1998) recently investigated the influ-
ence on the disk stability of the so-called drift motion of par-
ticles in planetary rings and stars in galaxies. This addition to
the basic circular minor systematic motion proportional to the
square ofcr (proportional to the temperature of the system),
whose value can be defined in the high-order approximation of
Lindblad’s epicyclic theory, is analogous to the magnetic (or
gradB) drift of an electrically charged particle of a plasma, and
is due to the nature of the differential rotation of the system
(Grivnev 1988; Griv 1996; Griv & Peter 1996). It was shown
that even in a Jeans-stable differentially rotating, nearly homo-

6 In conjunction with the last result, it should be emphasized again
that in view of the Lin-Shu type asymptotic theory the analysis pre-
sented here provides only an approximate estimation of the local sta-
bility criterion.

7 In turn, Toomre (1969) has shown that density waves of the kind
originally proposed by Lin and Shu (Lin & Shu 1966; Lin et al. 1969;
Shu 1970) cannot be stationary, and a wave theory can explain the
phenomena of spiral patterns only if some instability exists which could
cause small perturbations to grow to observable amplitudes.

Fig. 11. The disk with the Keplerian rotation and velocity dispersion
cr = 1.5 × (2Ω/κ)cT . All gravitational perturbations are practically
suppressed, including the most unstable nonaxisymmetric ones. The
result agrees with the theoretical explanation described in the Intro-
duction and Appendix A.1.

geneous disk, that is, when the generalized local stability con-
dition (3) is satisfied, other spiral perturbations of the kinetic
type will grow. The cause of this kinetic instability of small-
amplitude perturbations is the resonant interaction of drifting
stars with the field of the spiral Jeans-stable waves at the coro-
tation in a spatially inhomogeneous particulate system. In other
words, the cause of the instability is the resonant wave-particle
interaction in a hydrodynamically (Jeans-) stable stellar disk.
It is similar to the instabilities caused by a Cherenkov effect
(an inverse Landau damping effect) in a magnetized plasma. In
plasma physics the analogous instability is already known as
the transverse magneto-drift instability of an inhomogeneous
plasma (Krall & Rosenbluth 1963; Chamberlain 1963). Since
such a wave-particle interaction, being intrinsically a kinetic
interaction, involves resonant stars, it cannot be derived from
the ordinary epicyclic equations of motion of a mean particle
considered in Appendix A.1 or from fluid-like equations used
by Lau & Bertin (1978), Lin & Lau (1979), Drury (1980), Lin
& Bertin (1984), and others. The next, postepicyclic approx-
imation must be used for this purpose both in the analytical
approach of the Boltzmann-Vlasov kinetic equation and of par-
ticle dynamics (Griv 1996; Griv & Peter 1996; Griv & Yuan
1996; Griv et al. 1999).

We expect that resonant wave-particle scattering of stars as
outlined above will lead to further heating of the disk up to values
of Q > 2Ω/κ. Similar to the case of Jeans instability, a phase
of kinetic instability may also increase the central condensation
of the disk and assist in the formation of a condensed nucleus
of the galaxy (and a diffused outer envelope).

It may be suggested that this type of Landau instability may
be related to that discovered in globalN -body simulations by
Sellwood & Lin (1989) and Donner & Thomasson (1994) [see
Griv 1998 for a discussion]. What one can see in Figs. 4 and
5 are not the recurrent spiral waves found by Sellwood & Lin
and Donner & Thomasson. We suggest that in order to find
the recurrent Landau-type instability in local simulations, one
has to include in the linearized equations of motion (9)–(10)
and (14)–(15) terms proportional to the square of the epicyclic
radiusρ along with other terms of orderρ/r0 (one has to include
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the effects of spatial inhomogeneity as well).8 The reason for
this is that the kinetic instability of Jeans-stable perturbations
is expected to be associated with the resonant conditionω∗ =
kvD, wherevD is the velocity of the star drift proportional to
ρ2(dΩ/dr) [Griv 1996; Griv & Peter 1996; Griv et al. 1999].

4. Conclusions and discussion

We described some many-particle experiments concerning nu-
merical computations on the dynamics of the stellar layer of a
differentially rotating, almost centrifugally-supported galaxy.
Our usage of the oversimplified model of the layer (two-
dimensional disk) is justified because globalN -body simu-
lations have been shown that the inclusion of motions nor-
mal to the plane makes little difference to the evolution of the
rapidly rotating thin disk (Hohl 1978). We argued that in gen-
eral computer experiments presented here confirm the predic-
tions of the linearized stability theory of small-amplitude gravity
perturbations developed by Bertin, Lau, Lin, Mark, Morozov,
Polyachenko, and others: the differentially rotating, marginally
Jeans-stable disk of stars (and a planetary disk with rare col-
lisions between mutual-gravitating particles) is dynamically
hotter than the original Toomre’s local stability criterion pre-
dicts. That is, in a nonuniformly rotating disk of stars the crit-
ical Toomre’s stability parameterQcrit ≈ 2Ω/κ is appreciably
greater than (although still of the order) unity. In actual galaxies
and planetary ringsQcrit ∼ 2.

A dynamically cold rigidly rotating disk with the initial ra-
dial dispersion of random velocities of starscr < cT is found to
be gravitationally unstable as predicted first by Toomre’s (1964)
stability analysis. Namely, small-scale almost radial perturba-
tions grow exponentially during the time of the first rotation of
the system under consideration. In agreement with the theory, in
the numerical model of the warm (cr = cT ) rigidly rotating disk
the relatively high temperature leads to significant reduction of
the growth rate of the Jeans instability; such a disk is near the
stability threshold. In the hot numerical model (cr

>∼ 1.5cT ) all
Jeans-type gravity perturbations are stabilized.

By way of contrast, even the Jeans-stable (by the original
Toomre’s criterion) differentially rotating disk is still violently
unstable to the relatively large-scale nonaxisymmetric modes
when1 < Q < Qcrit. In such a system the spiral structure
develops rapidly during the first rotation of the system only.
Finally, differentially rotating, spatially homogeneous models
with the initial value of Toomre’s stability parameterQ

>∼ Qcrit

(or cr
>∼ (2Ω/κ)cT , respectively) show little structure that can

be associated with the Jeans instability. This basically agrees
with the theory discussed in the Introduction and Appendix A.1.

8 One has to recognize, however, that correctN -body simulation
of resonant effects is a very difficult problem in stellar dynamics be-
cause of lack of fine resolution in the phase space. Perhaps, the better
way to study the resonant wave-star interaction involved in the sup-
port or damping of the modes is to solve numerically the collisionless
Boltzmann equation similar to that by Nishida et al. (1984).

In both cases, rigidly and differentially rotating systems,
some residual instability is observed forQ up to a factor∼ 1.5
times the critical valueQcrit. The reason for such a minimally
larger value of the critical velocity dispersion might be partly
due to the shortcomings of the asymptotic Lin-Shu density wave
theory which is used here. Accordingly, we restricted our anal-
ysis to the approximation of moderately tightly-wound spirals
(Appendix A.1). Indeed, as is known, since all the above re-
sults are given for moderately tightly-wound spirals, they are
subject to an uncertainty of a factor of1 + O[tan2 ψ], where

tan2 ψ
<∼ 1. Straightforward estimates show that in the case of

spirals shown in Figs. 4, 5, 8, and 9tan2 ψ is about0.2–0.3;
thus, we can have reasonable confidence in theoretical and ex-
perimental results perhaps to within20% − 30% only. In this
regard, it is interesting to note that at least for a disk with a
constant rotation velocity Polyachenko (1989), who did not use
the approximations of the Lin-Shu theory, has found a slightly
greater value of the critical velocity dispersion than the crite-
rion (3) gives.9 Interestingly, such a slightly greater value of the
critical velocity dispersion is also consistent with the results of
Toomre’s (1981) numerical experiments with stellar disks, in
which the disks with a flat rotation curve became completely
stable specifically whenQ

>∼ 3.
Also, following Griv (1992), to obtain a more accurate value

of critical velocity dispersion one has to consider the next lead-
ing order in the asymptotic expansion by including higher-order
terms in the epicyclic amplitude.

In addition, the shortcomings of local experiments in Hill’s
equations context are quite obvious. For instance, almost cer-
tainly in contrast to our calculations, one has to include gravita-
tional forces on a given target particle from other particles whose
nearest image lies out of the distancermax = 1

2 min{Lx, Ly}
(see Sect. 2). This is because of the long range of gravitational
forces. Further theoretical and experimentalN -body studies to
clarify the problem are desirable. At the present, however, the
causes of these relatively small discrepancies between the re-
sults of our theory and localN -body simulations are not clear,
but may be due to both theoretical and computational factors
just mentioned above.

According to Eqs. (27) and (30), the Jeans-unstable pertur-
bations in a spatially homogeneous disk grow aperiodically with
the growth rate=ω∗ ∼ Ω. This means that as a rule the Jeans
instability develops rapidly on a dynamical timescale∼ Ω−1; in
galaxiesΩ−1 ∼ 108 yr � T , whereT ∼ 1010 yr is the Hubble
timescale. Inevitably, the velocity dispersion of particles would
be expected to increase in the field of unstable waves with an am-
plitude increasing with time as a result of “hydrodynamic” (non-
resonant) collective interactions between Jeans-unstable pertur-
bations and stars: the Jeans instability grows on a dynamical
timescale and presumably heats the disk untilQ ∼ Qcrit. In

9 According to Polyachenko (1989) the marginal stability condition
for Jeans perturbations of an arbitrary degree of axial asymmetry has
been available since 1965 (Goldreich & Lynden-Bell 1965), though in
a slightly masked form. See Polyachenko & Polyachenko (1997) for a
detailed discussion of the problem.



E. Griv et al.: Local stability criterion for a gravitating disk of stars 833

addition, the Jeans instability, which can effectively heat the
medium without raising the entropy, leads to the mass redis-
tribution of the system by increasing the central condensation
of the disk (and a diffused outer envelope). The diffusion of
stars in the velocity space and the coordinate space takes place
because stars gain additional oscillatory energy of the gravita-
tional field in the unstable density waves (see Griv et al. 1994
for a discussion).

It is interesting to note that about the same value ofQ
>∼ 2

brings both the observations of actual rapidly (and nonuni-
formly) rotating galaxies of stars we are investigating including
our own Galaxy (Toomre 1974, 1977; van der Kruit & Free-
man 1986; Bottema 1993) and the globalN -body simulations
(Hohl 1971, 1972, 1978; Sellwood & Carlberg 1984; Griv et
al. 1994; Griv & Chiueh 1998). Also observations and local
simulations of the Saturnian ring system show about the same
value ofQ (Lane et al. 1982; Salo 1992, 1995; Griv 1996, 1997;
Griv & Yuan 1996). Therefore, we conclude that in general both
the theory and ourN -body simulations are in agreement with
observational data.

In closing, the differences between actual inhomogeneous
gravitating systems and computer models used in our simula-
tions may result in ambiguity in the applications of theN -body
calculations and the theory to galaxies and planetary rings. In
order to resolve the ambiguity, it will be possible in the future
to make more realistic simulations of this type and to extend
the theory so as to allow for spatial inhomegeneity and a finite
thickness of the disk.
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Appendix A

A.1 The local stability criterion

A highly flattened disk of stars in almost circular orbit about
the galactic center will be subject to self-gravity, which will

tend to cause clumping of the matter. This tendency will be
counteracted by centrifugal force due to the rotational motion
of the mass, and stellar “pressure” due to the thermal motion. If
the “binding energy”

E = Egravity + Erotation + Ethermal

of a clump of matter of radiusrclump in orbit about the galactic
center at radiusr0 is negative, collapse will occur. IfE > 0,
any perturbation in density will be damped out. Below, through
the studying of dispersion relations, we reexamine the theory
of small-amplitude gravity oscillations and their stability in a
practically collisionless, two-dimensional, and spatially homo-
geneous galactic disk of stars.

In order to find the dispersion relation describing the col-
lective oscillations of a medium near its metaequilibrium state
within the method of particle orbit theory, one must determine
first the perturbed particle trajectories.10 Therefore, we start by
deriving formulae for nearly circular stellar trajectories in the
rotating galactic disk with nonaxisymmetric perturbations due
to spiral density waves. The perturbation of the main smoothed
galactic potential will be assumed small, and the star’s motion
will be represented, as usual, by epicyclic free oscillations plus
additional forced ones under the action of the gravitational field
of the waves. Then, the perturbed (or forced) velocities will
be used in the continuity equation to determine perturbation of
the surface density. Equating the result with the surface den-
sity given by the asymptotic solution of the Poisson equation,
the dispersion relation will be obtained. Finally, from the dis-
persion relation the local generalized stability criterion will be
derived. The criterion guarantees the lack of arbitrary but not
only axisymmetric Jeans-type unstable perturbations in a disk
of mutual-gravitating particles.

In the absence of any perturbing gravity, a nearly circular
orbit of a star (and a particle in planetary rings) may be repre-
sented as an epicyclic motion along the Coriolis ellipse (epicy-
cle) with the simultaneous rotation of the ellipse (the guiding
center) about the galactic center (Lindblad 1963; Chandrasekhar
1960; Binney & Tremaine 1987). In the epicyclic approximation
the dispersion of random velocities of stars is taken to be small
compared to the circular velocity of regular rotationV = rΩ
determined by the smooth potential (Eq. [8]). This condition
of nearly circular stellar orbits is normally satisfied in disks of

10 Note that the equivalence of the particle orbit theory and the more
rigorous Boltzmann kinetic equation approach in the absence of colli-
sions has been demonstrated, and in the astronomical literature is re-
ferred to as Jeans’ theorem; see Longmire (1963) and Chandrasekhar
(1965) for explanations. Similarly, the particle orbit theory reflects
both single-particle dynamics and the overall continuity of the sys-
tem of mutual-gravitating particles. It can be applied only to strongly
rarefied particulate systems with practically uncorrelated unperturbed
particle motion. The great advantage of using this purely Lagrangian
formulation lies in the fact that the equation of continuity and the Pois-
son equation can be simplified in the asymptotic limit of moderately
tightly-wound spiral waves. The analytic calculations presented here
are carried out in a new and insightful way, and it is hoped that many
workers in the field will find it useful.
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flat galaxies that are seen in the sky. With the exception of reso-
nances, the small perturbing gravitational field of a wave causes
small forced oscillations in addition to the usual free epicyclic
motion. Of course, it is doubtful that the approximation of nearly
circular orbits adopted above is valid for the very central regions
of flat galaxies. Assuming the nearly axially symmetric model,
the vertical, normal to the plane motion in the rapidly rotating
self-gravitating disk can be neglected (Shu 1970; Griv & Pe-
ter 1996). This assumption is partially supported by the global
N -body simulations showing that the inclusion of the verti-
cal motion makes little difference to the evolution of the thin,
rapidly rotating disk (Hohl 1978).

The disk is subject to the equation of continuity and the
equations of motion along the radial and azimuthal directions.
The linearized equations of two-dimensional motion (9)–(10) in
the frame of reference rotating with angular velocityΩ can be
rewritten in Hill’s approximation as (Spitzer & Schwarzschild
1953; Toomre 1990):

dvr

dt
− 2Ωvϕ + 2r0r1Ω

dΩ
dr

= −∂Φ1

∂r
, (14)

dvϕ

dt
+ 2Ωvr = − 1

r0

∂Φ1

∂ϕ
, (15)

wherer0 is the radius of the chosen circular orbit in the (r, ϕ)
plane,Ω ≡ Ω(r0), andr1 andϕ1 are small perturbations of the
coordinates. Eqs. (14) and (15) must be solved simultaneously
with the continuity equation and the Poisson equation.

In the model described by Eqs. (14) and (15), the case of rare
gravitational collisions between particles is considered when

κ ' Ω � νc,

whereνc is the effective collision frequency. That is, collisions
are so infrequent that their effects on both unperturbed and per-
turbed particle motions can be neglected. Evidence in favour of
such an almost collisionless galactic model is provided by ob-
servations (Chandrasekhar 1960). The evolution of the system
described by Eqs. (14) and (15) is determined by pure stellar
encounters with collective modes.

Neglecting all the terms containing the small perturbation
Φ1, the homogeneous differential equations (14)–(15) yield the
ordinary Lindblad’s expressions for unperturbed coordinates
and velocities of a star along the elliptic-epicyclic orbit:

r
(0)
0 = r0 − v⊥

κ
[sin(φ0 − κt) − sinφ0]; v(0)

r = v⊥

× cos(φ0 − κt), (16)

ϕ = Ωt+
2Ω
κ

v⊥
r0κ

[cos(φ0 − κt) − cosφ0]; v(0)
ϕ =

κ

2Ω
×v⊥ sin(φ0 − κt), (17)

whereρ/r0 = v⊥/κr0 � 1 andv⊥,φ0 are constants of integra-
tion (Spitzer & Schwarzschild 1953). The set of Eqs. (16)–(17)
describes the rotation of a star along the epicycle with frequency
κ and the mean epicyclic radiusρ ≈ v⊥/κ. Griv (Grivnev)
(1988) and Griv & Peter (1996) have obtained expressions for
the galactic orbits of stars to the second order of the epicyclic

theory, when terms proportional to(ρ/r0)2 are also retained in
the linearized equations of motion.

Now in order to find an inhomogeneous solution of Eqs. (14)
and (15) we have to choose a particular form of the gravitational
perturbationΦ1. Bearing in mind that the equilibrium distribu-
tion does not depend on theϕ (and thez) coordinate, in a rotating
frame, the perturbationΦ1 may be expanded in a Fourier series

Φ1(r, ϕ, t) =
∞∑

m=−∞
Φ̃m(r) eimϕ−iω∗t,

whereω∗ = ω−mΩ is the Doppler-shifted complex frequency
of excited waves as seen by the moving star and the termmΩ
takes into account the possibility of different harmonics in the
rotating system (many-armed waves), and<ω∗ and i=ω∗ are
the real and imaginary parts of the wavefrequency, respectively.
EvidentlyΦ1 is a periodic function ofϕ, and hence the azimuthal
numberm must be an integer. The criteria for stability differ
for eachm, and must be determined by a detailed analysis. In
the framework of the linear theory, we can select one of the
harmonics:̃Φ(r) exp (imϕ− iω∗t), which rotates at a uniform
rateΩp = ω∗/m andm is the number of spiral arms.

For such a form ofΦ1 the particular solution of the system
(14)–(15) is (e.g., Lin & Lau 1979, Sellwood & Kahn 1991, and
Griv et al. 1999):

v(1)
r =

−i
ω2∗ − κ2

[
ω∗
∂Φ̃
∂r

− 2ΩkϕΦ̃

]
(18)

× eimϕ−iω∗t,

v(1)
ϕ =

1
ω∗(ω2∗ − κ2)

[(
4Ω2 − κ2 + ω2

∗
)
kϕΦ̃

+ 2Ωω∗
∂Φ̃
∂r

]
eimϕ−iω∗t. (19)

The solutions (18) and (19) describe the forced velocities of a
star in the radial and azimuthal directions under the action of the
small gravity perturbation,|v(1)

r | and|v(1)
ϕ | � r0Ω. Thus, the

present theory suggests some systematic radial and azimuthal
motions of the stars distributed in the form of a spiral-like flow
field which is a small correction to the basic almost circular
galactic motion.

To stress, the solutions (18) and (19) define the forced veloc-
itiesv(1)

(
v(0)

)
of an individual star. In order to obtain the per-

turbed density, by using the continuity equation, we shall wish to
average Eqs. (18) and (19) over the distribution of initial veloc-
ities. Such a distribution (the so-called modified Schwarzschild
distribution) has been derived by Shu (1970) as follows:

f0(E , Jz) =
2Ω(r0)
κ(r0)

σ0(r0)
2πc2r(r0)

exp
{

− v2
⊥

c2r(r0)

}
.

HereE = v2
⊥/2 andJz are well defined integrals of motion,

that is, the epicyclic energy integral and the angular momentum
integral, and a distancer0 is defined by the relation

Jz = r(rΩ + vϕ) = r20Ω(r0).
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Then, a star in circular motion at a distancer0 has precisely the
given value ofJz. Such a distribution function for the unper-
turbed system is particularly important because it provides a fit
to observations (Shu 1970).

The continuity equation for a small density perturbation
σ1(r, t) in a spatially homogeneous, two-dimensional disk is

σ1 = −
∫ t

−∞

[
1
r

∂

∂r

(
σ0rv

(1)
r

)
+

1
r

∂

∂ϕ

(
σ0v

(1)
ϕ

)]
dt′

≈ −σ0

∫ t

−∞

(
∂v

(1)
r

∂r
+

1
r0

∂v
(1)
ϕ

∂ϕ

)
dt′, (20)

where|σ1/σ0| � 1 and we omitted the termσ0vr/r, i.e., we
neglected the curvature effect. This is a valid approximation
if r is large (Lin & Lau 1979; Sellwood & Kahn 1991). To
find a solution of Eq. (20) one has to choose an amplitude of
the perturbatioñΦ(r) in the set (18)–(19). If a medium is only
weakly inhomogeneous on the scale of the radial oscillation
wavelengthλ, i.e.,

L � λ andL � ρ,

whereL = |∂ lnσ0/∂r|−1 is the radial scale of the spatial
inhomogeneity, the wave behaves approximately as a plane one
(Alexandrov et al. 1984). In this case, the analysis can be greatly
simplified by using the convenient WKB approximation. We
seek thus the radial variation of the wave amplitude in a form:

Φ̃(r) = δΦ(r) ei
∫ r krdr′

, (21)

wherekr(r) is the radial wavenumber (Shu 1970; Griv & Pe-
ter 1996). In Eq. (21),δΦ(r) is a slowly varying amplitude,
while the rapidly varying part of̃Φ(r) resides in the phase,
i.e.,

∣∣∫ krdr
′∣∣ � 1. Since the amplitude and the wave vector

depends weakly on the coordinates, we can construct the solu-
tions of dynamic problems for weakly inhomogeneous disks in
the form of an expansion in the parameterλ/L; when calculat-
ing the terms of higher order one can simultaneously solve the
field equations with any desired degree of accuracy (Alexan-
drov et al. 1984, p. 243). Further, by applying the zero-order
or the so-called local approximation of the WKB method we
shall assume thatδΦ andkr are homogeneous,δΦ = const and
kr = const. In other words, in the local WKB approximation
the wave is considered plane: all terms of the orderλ/L and of
higher order are fully neglected (or all derivatives ofδΦ(r) and
kr(r) are neglected).

Thus, from here on we consider localized dispersion rela-
tions only. The reason for doing so is that localized solutions
seem to describe the physical situation in what follows in a
natural way. The meaning of localized dispersion relation has
been discussed in plasma physics (Krall & Rosenbluth 1963;
Alexandrov et al. 1984, p. 243; Krall & Trivelpiece 1986, p.
418).

Utilizing the above expansion of̃Φ, we can approximate
k · r by substituting the unperturbed orbits from Eqs. (16) and

(17).11 Such a substitution is permissible in the framework of the
linear theory. Then by averaging over initial random velocities
with the equilibrium Schwarzschild distributionf0(v2

⊥/2, r0),
the integral in Eq. (20) can be approximated as:

σ1 =
Φ1σ0

ω2∗ − κ2

[
k2

r +
4Ω2 − κ2 + ω2

∗
ω2∗

k2
ϕ

]
ω∗

×
∞∑

l=−∞

e−xIl(x)
ω∗ − lκ

+ iΦ1
4Ωkrkϕσ0

ω2∗ − κ2

∞∑
p=−∞

e−xIp(x)
ω∗ − pκ

, (22)

whereIl(x) is the Bessel function of imaginary argument of the
orderl. Its argument isx = k2

∗c
2
r/κ

2 ≈ k2
∗ρ

2 with the effective
wavenumberk∗ defined byk2

∗ = k2{1+[(2Ω/κ)2−1] sin2 ψ}.
To obtain Eq. (22) we introduced the polar coordinates in
wavenumber spacekr = k cosψ andkϕ = k sinψ. The in-
tegral in Eq. (20) was estimated using the forced coordinates of
starsr1 =

∫
v
(1)
r dt andϕ1 = (1/r0)

∫
v
(1)
ϕ dt (Eqs. [18] and

[19]), the identity

e±i(k∗v⊥/κ) sin φ =
∞∑

l=−∞
Jl(k∗v⊥/κ)e±ilφ

and the formula:∫ ∞

0
e−r2x2

Jl(αx)Jl(βx)xdx

=
1

2r2
exp

(
−α2 + β2

4r2

)
Il

(
αβ

2r2

)
, (23)

whereJl(k∗v⊥/κ) is the Bessel function of the first kind of the
order l. Note that analogous integrals appear in the theory of
magnetic plasma oscillations when one integrates the perturbed
phase-space distribution function along the unperturbed particle
trajectories (Krall & Rosenbluth 1963; Alexandrov et al. 1984,
p. 110; Krall & Trivelpiece 1986, p. 402).

In Eq. (22) the denominators vanish whenω∗ − lκ = 0.
At these values one gets hydrodynamic-type “wave-fluid” reso-
nances, and thereby this solution obtained in the framework of
linear approximation cannot be used. The most important reso-
nances are the corotation one, for whichl = 0 and correspond-
ingly ω∗ = 0, and the inner and outer Lindblad’s resonances,
for which l = ±1 andω∗ = ±κ. Resonances of a higher order,
l = ±2,±3, · · ·, are dynamically less important (Griv & Peter
1996). It is obvious that all the terms exceptl = 0 in the sum
over the Bessel functions in Eq. (22) can be ignored for the most
important long-wavelength oscillations, for whichx

<∼ 1. (But,
of course, in order to be appropriate for a WKB wave approxi-
mation we consider the perturbations with|kr|r � 1; typically,
in galaxiesr/ρ ∼ 20.) For example, comparing the contribu-
tions of |l| = 1 to that ofl = 0, in the long-wavelength limit
one obtains (see below):

I1(x)
I0(x)

ω2
∗
κ2 ≈ x

2
ω2

∗
κ2 .

11 Since we work within the two-dimensional disk model, the wave
vectork(r) is perpendicular to the rotation axis, that is,k is given by

k =
(
k2

r + k2
ϕ

)1/2
.
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As we shall see later, one has to consider the case of perturba-
tionsω2

∗/κ
2 ∼ x < 1 only. Therefore the above ratio is of order

x2 � 1 and in accordance with the earlier assumption terms
with |l| ≥ 1 can be neglected.

In Eq. (22) we should consider the low-frequency perturba-
tions |ω∗| < κ only. Indeed, in the opposite case of the high
perturbation frequencies,ω2

∗ � κ2, the effect of the disk rota-
tion (or of magnetic field in plasmas) is negligible and therefore
not relevant to us. This is because in this case the star motion is
approximately rectilinear on the time and length scales of inter-
est which are the wave growth/damping periods and wavelength,
respectively. In this rotationless case instead of Eq. (22) another
expression for the perturbed surface density can be found. In
plasma physics the analogous problem has been described, e.g.,
by Alexandrov et al. (1984, p. 110).

To summarize, starting from equations of motion and the
continuity equation we obtained the perturbed surface density
(Eq. [22]). Self-consistency requires that it should be equal to
the solution of the Poisson equation. Such an improved solu-
tion of the Poisson equation in the two-dimensional case in
which we are interested has been obtained to the second order
of the Lin-Shu asymptotic approximation of moderately tightly-
wound spirals (kr

>∼ kϕ or tan2 ψ � 1, respectively):

σ1 = −|k|Φ1

2πG

{
1 − i

krr

d ln
d ln r

[
r1/2δΦ

]}
(24)

(e.g., Lin & Lau 1979 and Bertin 1980).
Equating the “in-phase” parts of Eq. (22) and Eq. (24), we

get the generalized Lin-Shu local dispersion relation for low-
frequency oscillations with|ω∗| < κ near a certain arbitrary
radiusr in the following form:

ω2
∗ ≈ κ2 − 2πGσ0

|k|
(
k2

r +
4Ω2 − κ2 + ω2

∗
ω2∗

k2
ϕ

)

×
1∑

l=−1

ω∗
e−xIl(x)
ω∗ − lκ

. (25)

It is valid even for relatively open spirals and barlike struc-
tures throughout a disk excluding the resonance zones. Only
the principal part of the disk between the innerl = −1 (where
ω∗ = −κ) and outerl = 1 (whereω∗ = κ) wave-fluid Lind-
blad’s resonances considered. Note that Morozov (1980) by
using a kinetic approach numerically calculated the contribu-
tions of the|l| > 1 terms and found them to be smaller than
(0.05–0.07)(ω2

∗/κ
2) � 1 (see also Griv et al. 1999, Fig. 1 in

their paper).
The basic dispersion relation above is highly nonlinear in

the frequencyω∗. Following the plasma physics method (Lif-
shitz & Pitaevskii 1981, p. 128), let us consider various limiting
cases of perturbations described by some simplified variations
of Eq. (25), that have a special interest for us. For instance, we
solve this equation by successive approximations. In the first ap-
proximation, one can omit all terms which depend onkr andkϕ.
Under this condition, the zeroth-order approximation solution
is

ω2
∗ = κ2. (26)

Such a form for the trivial solution seems fairly straightforward.
Indeed, whenG = 0, that is, when the self-gravitation of the
disk is neglected, from the generalized dispersion relation (25)
we have ordinary epicyclic oscillations:

d2r1
dr2

+ κ2r1 = 0,

wherer1 ∝ exp(−iω∗t) is a small perturbation of the radius of
the initially circular orbit,r(t) = r0 + r1(t), at the motion in
the central field with the effective potential energyP = Φ0 +
J2

z /2r
2 (Griv & Peter 1996).

Using the elementary solution (26), in the next approxima-
tion the squared wavefrequency is

ω2
∗ = ω2

J ≡ κ2 − 2πGσ0|k|e−xI0(x)
×{1 +

[
(2Ω/κ)2 − 1

]
sin2 ψ

}
, (27)

whereω2
J is the square of the so-called Jeans frequency. This is

the required simplified dispersion relation, which describes the
physics and the condition of the gravitational (Jeans) modes in
the two-dimensional disk. The hydrodynamic-type Jeans insta-
bility occurs whenω2

J < 0.
Generally, there are two branches to our solution (27): the

case of long waves,x
<∼ 1 or λ

>∼ 2πρ, in which we are espe-
cially interested, and the opposite case of short waves,x � 1.
The short-wavelength instabilities (those withx � 1) are not
dangerous in the problem of the galactic disk stability, since
they lead to the very small-scaleλ2 � ρ2 perturbations of the
density only. Therefore from now on, we consider just the long-
wavelength (or the hydrodynamical) limitx2 � 1, for which
the following expansions can be used

e−xI0(x) ' 1 − x+
3
4
x2 ande−xI1(x) ' x

2
.

In the short-wavelength limit,

e−xI0(x) ≈ e−xI1(x) ≈ 1√
2πx

[
1 +O

(
1
x

)]
,

while in a more rigorous approximationIl(x) is a monotonically
decreasing function ofl for a fixedx � 1.

The local dispersion relation in the simple form (27) gener-
alizes that of the Lin-Shu one (Lin et al. 1969; Shu 1970). This
type of the dispersion relation for spiral waves, derived in a sim-
ilar form, e.g., by Morozov (1980, 1981b) who used a kinetic
approach, takes into account effects of azimuthal forces (m and
ψ /= 0). It goes beyond the original Lin-Shu relation in that it
is now applicable to the critically important case of the nonax-
isymmetric perturbations concerning spiral structures. This re-
lation is qualitatively similar to the standard dispersion relation
of Lin-Shu in thatω2

∗ → κ2 both in the long-wavelength, or fluid
limit x → 0, and in the short-wavelength limitx → ∞. Similar
dispersion relation can also be derived from the Lynden-Bell
& Kalnajs (1972, Eq. [A11] in their paper) dispersion relation
for open spirals. Unlike Lynden-Bell & Kalnajs, Morozov, and
Griv & Peter, we used here a simplified method of particle orbit
theory.
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In Eq. (27),e−xI0(x) is the so-called reduction factor, which
is approximately equal to unity in dynamically cold systems
(cr = 0) and is always smaller than unity in dynamically hot
disks (cr > 0). Lin & Shu (1966) first introduced such a re-
duction factor; they have already pointed out that the high-
dispersion stars would not participate in the spiral pattern in
full, and this effect can be described with the help of the reduc-
tion factor. Different forms of the reduction factor are given by
Athanassoula (1984). The existence of solutions of the disper-
sion relation withω2

J < 0 implies the aperiodic Jeans instabil-
ity. In this case of gravitational instability the wavefrequency
is purely imaginary, so that the wave propagation cannot oc-
cur. The solutions withω2

J > 0 describe long-lived natural
(harmonic) oscillations. The marginal condition between these
cases is given byω2

J = 0. To emphasize, this instability is hy-
drodynamical in nature and has nothing to do with any resonant
effects. In a general sense, the instability represents the ability
of a gravitating disk to relax from a nonthermal (or an almost
nonthermal) state by collective collisionless processes in much
less time than the binary collision time.

Apart from the obvious replacement ofkr by k, which
originates from the consideration of the nonaxisymmetrical
modes, the relation (27) differs from the corresponding stan-
dard Lin-Shu expression by the appearance of the factor{

1 +
[

(2Ω/κ)2 − 1
]
sin2 ψ

}
. This factor indicates an extra

clumping associated with the azimuthal forces in the differen-
tially rotating media: spiral perturbations, in contrast with radial
ones, are subject to the influence of the nonuniform character
of the rotational motion. Lau & Bertin (1978) first obtained a
somewhat similar expression for the extra clumping in a gas dy-
namical model (see also Bertin & Mark 1978, Lin & Lau 1979,
Bertin 1980, and Lin & Bertin 1984).

Let us further analyze the consequences of this simple dis-
persion relation on the dynamical behavior of disks of stars.
First, by using the conditionω2

J ≥ 0 for all possiblek to sec-
ond order in asymptotic theory, a generalized stability criterion
can be immediately obtained. Indeed, if the nonaxisymmetric
Jeans-type perturbations are to be stable, the value of the stel-
lar radial-velocity dispersioncr(r) should be greater or at least
equal to that given by Eq. (2).12 To repeat, it is clear from the
criterion (2) that stability of the nonaxisymmetric perturbations
(m andψ 6= 0) in a nonuniformly rotating disk(2Ω/κ > 1)
requires a larger velocity dispersion than the ordinary Toomre’s
critical valuecT (cf. Fridman & Polyachenko 1984, Vol. 1, p.
323). It is crucial to realize that the various dynamical properties
of the perturbations with differentψ are peculiarities of the dif-
ferentially rotating disks only. In a way of contrast, in the rigidly
rotating disk2Ω/κ = 1 and the critical velocity dispersion (2)
is in fact equal tocT .

12 To obtain Eq. (2) by using the dispersion relation (27), one first
finds the critical wavenumberkcrit from the relation∂ω2

J/∂k = 0.
Then thiskcrit is substituted into the dispersion relation and from the
conditionω2

J ≥ 0 the critical velocity dispersion is found.

Second, according to the dispersion relation (27), the growth
rate of the axisymmetric gravitational modes has a maximum at
the radial wavenumberkJ ≈ κ/cr or at the radial wavelength

λJ ≈ 2πcr
κ

≈ 2πρ. (28)

The above equation reflects the well-known fact that the veloc-
ity dispersion shifts the threshold of gravitational stability to-
ward a longer wavelength. At the limit of stability with respect
to axisymmetric gravity perturbations the critical radial velocity
dispersioncr ≈ 3.4Gσ0/κ and the critical wavelength becomes
approximately equal to4π2Gσ0/κ

2. This reproduces the usual
Toomre’s stability criterion to have a stable disk against ax-
isymmetric collapse and the usual Jeans-Toomre critical radial
wavelength (Toomre 1964, 1977).

On the other hand, in the case of nonaxisymmetric pertur-
bations of a differentially rotating disk, the critical wavelength
is a slightly longer:

λcrit ≈ {1 +
[
(2Ω/κ)2 − 1

]
sin2 ψ

}1/2
λJ ≡ βλJ , (29)

where in galaxies as a ruleβ = 1.2–1.5.
Third, the growth rate of the Jeans instability is

=ω∗ ≈
√

2πGσ0|k|{1 + [(2Ω/κ)2 − 1] sin2 ψ}e−xI0(x).(30)

Generally,=ω∗ ∼ Ω. That is, the instability growth rate is high
and the instability develops rapidly on the dynamical timescale
(which is the time of one galactic rotation∼ Ω−1). Eq. (30)
indicates that open “barlike” modes are seem to be the most
unstable,=ω∗ ∝ | sinψ|. It is important to point out that the
growth rate decreases as the radial velocity dispersion grows
approximately as=ω∗ ∝ exp(−c2r). It is also interesting that
in the case of differentially rotating disks the growth rate is
dependent on the mode numberm; it is only in a rigidly rotating
disk that the growth rate is independent of the mode numberm.
In addition, for the Jeans-unstable perturbations (ω2

J < 0) the
wavefrequency is purely imaginary,<ω∗ = 0 and=ω∗ > 0,
and therefore the instability develops aperiodically.

Finally, in Sect. 4 of the present paper, we confirmed the
generalized local stability criterion (2) for the case of the most
unstable spiral perturbations – barlike ones withψ → 90◦ – by
localN -body computer simulations.

A.2 The effect of interparticle collisions

Thus far, we have studied the dynamics of the collisionless
disk. Let us here estimate the influence of interparticle colli-
sions on the dispersion law of Jeans perturbations using the
simple method of particle orbit theory. Of course, the Boltz-
mann kinetic equation provides a more rigorous but much more
complicated treatment of the problem of a collisional disk os-
cillations (Griv & Chiueh 1996; Griv & Yuan 1996; Griv et al.
1997a).

Including non-physical elastic (gravitational) interparticle
collisions, the equations of motion (6)–(7) for an individual star
in inertial frame with the origin at the disk center take the form:
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d2r

dt2
= r(ϕ̇)2 − ∂Φ

∂r
− νcvr, (31)

d

dt
(r2ϕ̇) = −∂Φ

∂ϕ
− νcrvϕ, (32)

where the friction termF = −νcv approximates the force pro-
duced by collisions,νc = n〈sv〉 is the effective collision fre-
quency,n is the number density of particles,s is the effective
“radius” of a particle,〈· · ·〉 denotes the average over particles
of all random velocitiesv in a Maxwellian distribution, and the
terms withνc are small corrections (in the case of rare,νc � Ω,
and weak collisions,νc � |ω∗|, in which we are especially in-
terested). This is just the opposite of the procedure in ordinary
gas dynamics, where collisions are the dominant effect. This
approach is valid for high temperatures and low densities, when
the mean potential between neighboring particles is small com-
pared with the thermal energy. The collision model of the form
(31)–(32) does not take into account the detailed mechanism
of the gravitational long-range interaction such as the spatial
distribution of particles, non-rectilinear orbits of particles in a
rapidly rotating system, etc. (Griv et al. 1997a). It seems that this
model can give qualitatively correct results in considered rar-
efied disks where the detailed effects of gravitational collisions
may be ignored.

The linearized Eqs. (31) and (32),Φ(r, t) = Φ0(r) +
Φ1(r, t) andr(t) = r0 + r1(t), take the form:

d2r1
dt2

≈ h2
0 − 2h0

∫ t

−∞ (∂Φ1/∂ϕ) dt′

(r0 + r1)3
− ∂Φ0

∂r
− ∂Φ1

∂r
−νcvr,

(r0 + r1)2(ϕ̇0 + ϕ̇1) ≈ h0 −
∫ t

−∞

∂Φ1

∂ϕ
dt′

−νcr
2
0

∫ t

−∞

∂ϕ1

dt
dt′,

whereh0 = r20ϕ̇0 is the area constant andr0ϕ̇2
0 = (∂Φ0/∂r)0.

Equations above describe the small departurer1(t) of the actual
radiusr(t) from r0, which is chosen so that the constant of
areas for the circular orbith0 is equal to the angular momentum
integralJz = r2ϕ̇. From these equations we get

d2r1
dt2

+ κ2r1 = −2Ω
r0

∫ t

−∞

∂Φ1

∂ϕ
dt′ − ∂Φ1

∂r

−νc
dr1
dt
, (33)

(r0 + r1)2(ϕ̇0 + ϕ̇1) − Ωr20 = −
∫ t

−∞

∂Φ1

∂ϕ
dt′

−νcr
2
0

∫ t

−∞

dϕ1

dt
dt′, (34)

where|r1/r0| � 1 and|Φ1/Φ0| � 1 for all r andt.
The homogeneous differential Eqs. (33) and (34) yield the

ordinary Lindblad’s elliptic-epicyclic orbits:

r = r0 − v⊥
κ

[sin(φ0 − κt) − sinφ0],

ϕ = Ωt+
2Ω
κ

v⊥
r0κ

[cos(φ0 − κt) − cosφ0],

wherev⊥/r0κ ∼ ρ/r0 � 1 (Spitzer & Schwarzschild 1953).
The particular solutions yield the expressions for perturbed

velocities (cf. Eqs. [18] and [19])

v(1)
r =

−iω∗
ω2∗ − κ2 + iω∗νc

∂Φ̃
∂r

eimϕ−iω∗t, (35)

v(1)
ϕ ≈ kϕΦ̃

4Ω2 − κ2 + ω2
∗

ω∗(ω2∗ − κ2 + iω∗νc)
eimϕ−iω∗t, (36)

where|ω∗| ∼ Ω � νc and only the “in-phase” terms are in-
cluded. As we can see from the equations above, in comparison
with the collisionless disk in the collisional system one needs
to replace the wavefrequencyω∗ byω∗ + iνc; thus ifνc/|ω∗| is
small enough we can ignore these collisions.

Paralleling the analysis leading to Eq. (27) and making use
of Eqs. (35) and (36), it is straightforward to show that the sim-
plified dispersion relation can now be expressed as

ω2
∗ + iω∗νc − ω2

J = 0, (37)

where as usualω2
J is the squared Jeans frequency. The solution

of Eq. (37) is

ω∗ ' ±p|ωJ | − i
νc

2
, (38)

wherep = i for Jeans-unstable perturbations (ω2
J < 0) and

p = 1 for Jeans-stable ones (ω2
J > 0), |ωJ | ∼ Ω, andνc � |ωJ |.

Eq. (38) describes the weak damping of Jeans-stable pertur-
bations,=ω∗ < 0. Such a stabilizing influence is quite obvious,
because in general the effect of collisions is to disrupt the or-
ganized wave motion (Alexandrov et al. 1984). Accordingly, as
a result of collisions, a Jeans-stable wave tends to be damped
on a timescale of the order of the mean time between colli-
sions∼ 1/νc. Clearly, however, these rare,νc � Ω, and weak,
νc � |ω∗|, gravitational collisions between particles do not
affect the local stability criterions (2)–(3).

It follows from Eq. (38) that the collisional effects do not de-
pend on the wavenumberk. The latter contradicts our recent re-
sults obtained with the exact Landau integral of collisions (Griv
et al. 1997a). Therefore, gravitational collisions are poorly rep-
resented by an approximate method presented here. The results
obtained in this Appendix indicate only a tendency of Jeans-
stable perturbations to be damped in a colisional system, and
the damping rate given by Eq. (38) is correct only to the order
of magnitude.

Thus, it is found that rare and weak collisions between par-
ticles lead to the weak stabilization of Jeans-stable modes in a
stellar disk. The effect is small: the time necessary for the wave
amplitude to fall to1/e of its initial valueτf is about the colli-

sion time,ν−1
c . We have assumed|ωJ | ∼ Ω andk2ρ2 <∼ 1. This

is much longer than the characteristic time of a single revolution
of a disk∼ Ω−1 � ν−1

c .
According to observations, in the disk of the Galaxy the

frequency of gravitational collisions between stars and giant
molecular cloudsνc ∼ 10−9 yr−1 (Grivnev & Fridman 1990).
Therefore, even though the timeτf is longer than the characteris-
tic time of a single revolution of the Galaxy in the solar vicinity, it
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is quite sufficient to damp the standard Lin-Shu quasi-stationary
density waves on the Hubble timeT ∼ 10ν−1

c ∼ 1010 yr. By
this way, the effects of even rare (and weak) encounters may
become essential.

A.3 Relaxation time in strictly two-dimensional simulations

Consider a system of mutual-gravitating particles. The local dis-
tribution functionsf(r,v, t) must satisfy the Boltzmann kinetic
equation

∂f

∂t
+ v·∂f

∂r
− ∂Φ
∂r

·∂f
∂v

=
(
∂f

∂v

)
coll

, (39)

where Φ(r, t) is the total gravitational potential determined
self-consistently from the Poisson equation,(∂f/∂v)coll ∝
νc(f0 − f) is the so-called collisional integral which defines
the change off arising from ordinary interparticle collisions,
νc is the collision frequency, andf0 is the quasi-steady state
distribution function.

In plasma physics, Lifshitz & Pitaevskii (1981, p. 115) have
discussed phenomena in which interparticle collisions are unim-
portant, and such a plasma is said to be collisionless (and in the
lowest-order approximation of the theory one can neglect the
collision integral in the kinetic equation). It was shown that a
necessary condition is thatνc � |ω∗|: then the collision op-
erator in the kinetic equation (39) is small in comparison with
∂f/∂t. In Appendix A.1, we have shown that generally speak-
ing the frequency of collective Jeans-type oscillations in a stellar
disk |ω∗| ∼ Ω. Therefore, in the gravitation case in the lowest-
order approximation of the theory we can neglect the effects of
collisions between particles on a timescale of many rotations
if νc � Ω. Lifshitz & Pitaevskii (1981) have pointed out that
collisions may be neglected also if the particle mean free path is
large compared with the wavelength of collective oscillations.
Then the collision integral in Eq. (39) is small in comparison
with the termv · (∂f/∂r).

In this Appendix we test numerically if the models used in
our N -body simulations are being correctly modelled as col-
lisionless Boltzmann (Vlasov) systems. The direct method of
checking if the system is being modelled as a collisionless sys-
tem is to repeat a calculation using a mass spectrum (Rybicki
1971). It is obvious that as a result of gravitational collisions
there is a tendency towards energy equipartition between the
various masses. Hohl (1973) has determined the experimental
relaxation time and compared it with a theoretical prediction
for the collisional relaxation time of a two-dimensional disk
by using the method of global simulations; here we do such a
comparison by using the method of local simulations.

Let us consider the strictly two-dimensional computer
model consisting of2% stars of massm3 = 10ms, 18% stars of
massm2 = 2ms, and80% stars of massm1 = 0.55ms. The to-
tal number of stars, which are distributed in the rectangular box
with Lx × Ly = 4λJ × 6λJ , is small,N = 2400, in compari-
son with the number of stars in simulations presented in Sect. 3.
Initially, the different mass groups of stars are distributed with
the same velocity dispersion (with different temperatures).

Fig. A1.Rate of change of the mean kinetic energy for stars of the three
mass groups of the rigidly rotating model withN = 2400,Lx ×Ly =
4λJ × 6λJ , andcr = 1.5cT ; 1 – kinetic energy of stars with the mass
of a star10ms, 2 – with the mass of a star2ms, and 3 – with the mass
of a star0.55ms. The two groups of heavy stars lose kinetic energy
while the group of lightest stars gains an approximately corresponding
amount of kinetic energy. The mean slope of the curves will result in
energy equipartition after about 20 rotation periods. This result suggests
that interparticle collisions do not play a significant role for instabilities
studied in the paper.

In Sect. 3.1 of the present paper it has been found that the
rigidly rotating disk becomes almost stable gravitationally for
cr

>∼ 1.5cT . In such a Jeans-stable system collective effects
associated with the classical gravitational instability will not af-
fect the random velocity dispersion of particles (Griv et al. 1994;
Griv & Peter 1996): the change of velocity dispersion can be
explained only by usual two-body encounters.13 For this reason
the initial condition was chosen to be a quasi-stable uniformly
rotating disk withcr = 1.5cT . Following Hohl (1973), let us
define the relaxation timeτE as the time required for the mean
change of the kinetic energy per unit mass of the test star to
equal the initial kinetic energy.

In Fig. A1 we show the change of the ratio of the mean parti-
cle (kinetic) energy,< m1V

2
1 >, < m2V

2
2 >, and< m3V

2
3 >

(in units of the total kinetic energy of the system), for the dif-
ferent mass groups, whereVi is the total velocity of a given
mass group. As is expected, the two groups of heavy stars lose
energy while the group of lightest stars gains an approximately
corresponding amount of kinetic energy. Also as is expected,
one can see the decrease in the change of the kinetic energy
with time. This is because the collisional frequencyνc ≈ 1/τE
is inversely proportional to the velocity dispersion (Eq. [12]),

13 In a plasma, it has already been known that the rate of relaxation
toward equilibrium can be greatly enhanced by collective processes
(Kulsrud 1972; Alexandrov et al. 1984, p. 408; Krall & Trivelpiece
1986, p. 512).
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and thus the encounters only weakly affect the stars with high
random velocities.

As one can see, the mean slope of the curves shown in
Fig. A1 will result in energy equipartition after about 20 ro-
tation periods. It is crucial to realize that these relaxation times
even for this relatively small number of model stars are much
longer that the time of a single disk revolution. We conclude
that the two-dimensional computer models used in the present
study may indeed be considered as collisionless ones to a good
approximation at least during the first 8–10 rotations which are
of especial interest in spiral-galaxy simulation. Therefore, we
argue that the collective effects studied in this paper were ap-
parent before the collisional timescale was reached.
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