Forum Springer Astron. Astrophys.
Forum Whats New Search Orders

Astron. Astrophys. 347, 821-840 (1999)

Next Section Table of Contents

Local stability criterion for a gravitating disk of stars

Evgeny Griv 1,2, Baruch Rosenstein 3, Michael Gedalin 1 and David Eichler 1

1 Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
2 Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 1-87 Nankang, Taipei 115, Taiwan, ROC
3 Electrophysics Department, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Received 23 June 1998 / Accepted 5 January 1999


Computer N-body experiments are desribed which test the validities of the original Toomre's (1964) criterion and of a generalized criterion for local stability of Jeans-type perturbations in a self-gravitating, infinitesimally thin, and practically collisionless disk of stars. The fact that the nonaxisymmetric perturbations in the differentially rotating system are more unstable than the axisymmetric ones is taken into account in this generalized criterion. It is shown that for differentially rotating disks, the generalized criterion works as well as Toomre's ordinary criterion does for rigidly rotating ones.

A modest discrepancy is observed between the analytical stability criteria and the numerical results. We tentatively attribute this to the shortcomings of the asymptotic density wave theory and possibly additional ones introduced by approximations in the local numerical code employed here. In addition, the linear stability theory of small oscillations of a disk of stars is reexamined by using the method of particle orbit theory. This representation gives new insight into the problem of gravitating disk stability. Certain applications of the theory and the N-body simulations to actual disk-shaped spiral galaxies are explored as well.

Key words: galaxies: kinematics and dynamics – galaxies: structure

Send offprint requests to: Dr. E. Griv at Beer-Sheva (griv@bgumail.bgu.ac.il)

SIMBAD Objects


Next Section Table of Contents

© European Southern Observatory (ESO) 1999

Online publication: June 6, 1999