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Abstract. Expressions are developed for the flux and polariza- Some special cases of anisotropic light source have been
tion of radiation scattered by a spherically symmetric envelopensidered. For example, Gnedin et al. (1976) calculated the
for a central point stellar light source that radiates anisotropelarization for close X-ray binaries using a two dimensional
ically. These are obtained in terms of the components of thedel of an ellipsoidal Roche lobe. Stamford & Watson (1980)
spherical harmonics of the flux anisotropy from the source. Sucllculated the polarization produced by nonradially pulsating
anisotropy can arise from stellar spots, or from distortion of ttstars. Fox (1993) showed how to compute the envelope polar-
star through rotation, pulsation, or magnetic effects. Expliditation when the stellar source is itselfintrinsically polarized. He
expressions for the Stokes parameters are obtained in the @@ considered the scattering of polarized light from a stellar
of an ellipsoidal star of uniform surface brightness. It is thusource of arbitrary shape using an approach based on intensity
shown that even when the scattering envelope is spherical, oilmments. His applications, however, were restricted to a spher-
servationally significant polarization can arise from stars withal star with limb polarization. Bjorkman & Bjorkman (1994)
physically realistic degrees of distortion. The time dependenicave considered the effects of gravity darkening in a rapidly ro-
of the polarization is computed for models of ellipsoidal statating star for the UV continuum polarization of an axisymmet-
in the cases of pure rotation, pure pulsation, and both rotatiaadisk. In this first paper, we derive the effects of anisotropy of
and pulsation. the stellar light source using the formalism of Simmons (1982,

1983). Here we consider the case of a spherical envelope to
Key words: polarization — stars: binaries: general — stars: ciisolate the basic effects arising from stellar anisotropy, leaving
cumstellar matter — stars: oscillations — stars: rotation more general cases to later papers in the series.

Stars are in general anisotropic light sources. This
anisotropy arises mainly through two effects. First, the surface
brightness may be non-uniform owing to blemishes, for exam-
1. Introduction ple from magnetic fields, spots, or convection cells. Second, the

Following the first general analytic treatment by Brown Star may be non-s_ph_erical, the_ distortion arising from r_otation,
McLean (1977) of polarization of starlight from an unpolarpmsat'on’ magnetic f|elc_is, or tidal effects of a co.mpanlon.star.
ized isotropic point light source produced by single scatterifig SUCh cases the polarization that is produced in the optically
of electrons in an axisymmetric circumstellar envelope, of otHlICK Stellar atmosphere is small unless the distortion is quite
erwise arbitrary shape, Brown et al. (1978) treated the caseSihificant (Haisch & Cassinelli1976; Collins & Buerger 1974).
multiple light sources in optically thin envelopes of arbitrary "€ Small level of polarization from such atmospheres is largely
shape and applied the theory to rotating binary systems (qu:l'e to multiple scattering, which tends to destroy polarization.
also Rudy & Kemp 1978). Cassinelli et al. (1987) and Brownurthermore, the symmetry of the stellar surface produces can-
et al. (1989) incorporated the effects of the finite size of the sffflation and a low integrated polarization. On the other hand,
as a light source. Milgrom (1978), Brown & Fox (1989), Fox &s!ng!g scattenng frqm an optically thin envelope may produce
Brown (1991), and Fox (1991) considered the consequenceSigfificant polarization. _ _

occultation effects by the star for the observed polarization of N the following section, we derive exact expressions for the
circumstellar envelopes. Simmons (1982, 1983) generalized #i@k€s parameters for anisotropic light sources with spherical
work of Brown & McLean (1977) and of Brown et al. (1978)envelopes and Thomson or Raylelgh scatte_rl_ng. In Sect. 3, the
to Mie scattering in anisotropic envelopes. However, in all G€neral expressions are applied to the specific case of an ellip-

these preceding works, the light source has been treated agqqal star of uniform bright_nes_s, andin Sect. 4, these r_esults are
isotropic unpolarized emitter. used to compute the polarization expected from rotating stars,

X-ray binaries, and non-radially pulsating stars.
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Fig. 1. Definitions of the star and the observer coordinates. The point In general the number density of scatterers may be writ-
O marks the emitting anisotropic star (point source), &ha general ten asn(r, 6, ¢) and the flux of unpolarized stellar radiation as
scattering point in the envelop@. is the rotation axis, wheris the  F(r, 8, ¢). Then following Simmons (1982), the scattered flux
scattering angle, andl is the polarization direction. The Euler anglesand Stokes parametei$,., ), U) of the scattered radiation at

area = 0, 8 = i the inclination angle betwee@z andOZ, and the Earth a distancB away are given by
v = ¢ the angle to theX-axis in thexy-plane. The scattering plane

is P’OP. Fec 1

'S Z* } = W / / / n(r, 07 d)) ‘F(rv 97 d)) ,,,2

2. The polarization arising from source anisotropy X (?1 T 2:2) . dr sin 0 df do (2)
(i1 — i2) exp(—2i¢) ’

We derive the general case of Rayleigh or Thomson scattering

in a circumstellar envelope, with the star located at its centéfhereZ* = Q — iU with i = /=1, k = 27/) is the wave
Following, we restrict ourselves to a spherical envelope to lumber, and, andi, are the scattering functions as defined by
lustrate the basic effects of source anisotropy. For simplicity&n de Hulst (1957). The circular polarization will be taken as
is assumed that the star is small compared to the size of &O.

envelope, thus allowing each scattering particle to be treated asFor Thomson scattering by free electrons or Rayleigh scat-
being illuminated by radiation from a unique direction. Hencéering, we have

the effects of occultation (e.g., Fox & Brown 1991) and finite 2

star depolarization (Cassinelli et al. 1987) are neglected. Evient io = B o (14 cos? ) 2

for a spherical envelope, the occurrence of non-isotropic illu- T

mination will lead to a net observed polarization, which wilWhereo is the total scattering cross section (e.g., see Brown &
depend on the angle between the direction of maximum fildcLean 1977). For Thomson scatterings independent of the
from the source and the line of sight. wave numbek whereas for Rayleigh scatteriagx k* oc A=4.

We follow Simmons (1982, 1983) in using two coordi- In relation to previous models, the basic result of source
nate frames centered on the star. Referring to Fig. 1, the st&@risotropy is tointroduce the factéi(r, ¢, ¢) inside the integral
frame (X,Y, Z) has spherical coordinatés, 9, o). The ob- over the scattering volume. This complication of allowing both
server's frame is described Hy, y, z) with spherical coordi- F andn to be anisotropic immediately suggests that the effects
nates(r, #, ¢). The axisOz is directed toward the observer, an®n @ andU will depend on whether the two functions enhance
Oz is chosen so thab Z lies in thez: — = plane (see Fig. 1). The or offset one another. In the case of a spherical envelope, the
orientation of framé X, Y, Z) to that of(x, y, z) is given by the problem simplifies owing to the number density being a function
Euler angleg«, 3,7) (c.f., Messiah 1962). With the adopted?f radius only, withn = n(r).
orientation of axes, the Euler angles are- 0, 3 = i the view- The illuminationF(r, 6, ¢) in Eq. (1) describes the stellar
ing inclination angle betwee®Z andOz, andy = ¢, is the radiative properties in the observer’s system of coordinates, but
angle betwee X and ther — = plane (or the longitude of the it is more natural to describe the behavior in terms of the stellar
star). The angle thus measures the rotational position of th8ystem. Providing that” varies smoothly, we may express it in
star relative to the observer (see Fig. 2). Light scattered by t@ims of spherical harmonics, viz
electron at positiorir, ¥, ) in the star frame will be scattered el
through an anglé in the observer's system, and the orientatiofr(,. ) Z Z Fyn (7) Yin (9, ). A3)
of the scattering plane aboutwill be given by¢. =0 me—i
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Using the rotation matrices described by Messiah (1962; c.f.,oq | '~~~ T T oo nn T
Simmons 1983) to convert from the star’s frame to the ob- o1 ]
server’s, we have i - i=0
Nt i=30° il
n=l ! 15 — i=60° —
Yiu(9,9) = Y RiL(0.5,7) Yin (6, 0). 4) i i=90"
n=-—I [ 7
Substituting this into Eq3) yields the transformation/6f " 1
Here, the required transformation is the one relatii the % 1or ]
star system to that for the observer’s system: - R
co m=l : :
f(r,9,¢) = Z Z Flnl(r) °r i
=0 m=—1 i
n=| i
X Z Rr(lll)n(a’ﬁ’/y) len(e’(b) (5) 0 - **iif,f,fg
n=—1 L - 3
L ‘ L ‘ L L ‘ L L ‘ L L
Note thatY},, is defined as in Jackson (1975), viz -3 -2 -1 0 1 2
) log c/a
Yin(0, ) = kin PP(cos §)el™? (6)

) Fig.3. The percentage normalized polarizatipnfor MacLaurin
with spheroids (oblate shapesg< 1), and Jacobi ellipsoids (prolate shapes,

¢ > 1). The other two axes of the star are taken as b = 1. The view-

(204+1) (I —n)! @ ing perspective is fops = 0°, but different inclinations as indicated.

fin 47 (I +n)! The envelope has an optical depthrof= 0.1.
and o —
d fsc = dx D2 |: 4 R(()%) (aa ﬁa 7) I‘00
PP () = (=1)" (1 = 2*)"/? —— P(x), 8) m=2
& +\/? S RGMNa, BT (13)
whereP,(z) are Legendre polynomials. S am
The rotation matrices are defined by d
an
RO (0, 8,7) = e " r{) (B) e ™, ) m=2
7o = 372" RY) r 14
where from the Wigner formula, w2V 15 Z 2m (@ 5,7) Tam (14)
m=—2
NUNSES Syauit V(I — o)1+ m)l (7 —m)! where
- (l+n—t)N({@-—m—t)t!{t—n+m)! oo
T = / n(r) Fim(r) r? dr, (15)
0

1 2l4+n—m—2t 1 2t—n+m
X [COS <26>} X {Sin <2ﬂ>] (10) and

In Eq. (I0), the summation extends over all integer valugs o T N .
for which the arguments of the factorials are positive or zer%fm(r) - /O /O F(r,9,0) Yin (9, ¢) dp sind dj. (16)
The number of terms in this sumis- 7, wheren is the smallest
of the four numberg+n andi+m (c.f., Messiah 1962).

To evaluate the Stokes parameters of the scattered Ii%
we note that in Eq[{2) the scattering function factors can
expressed as

The above expressions are exact and allow calculation of the
c[attered flux and Stokes parameters for &ify, 0, ¢), noting

eat all the harmonics of the ordéror |m| higher than 2 are
zéro for the case of Thomson and Rayleigh scattering. If the

star radiates isotropically, it is at once clear tiaand U will

4 T reduce to zero, and th&t,. will only depend on the constafity
2 / * *

1 +cos™0 = 3 [ Am Yoo + \/;}/20(9)} (1) termin Eq.[(IB). However in general, the degree and direction
of polarization will depend on the properties of the coefficients

and I';., describing the anisotropy of the source.

: 2
2 —2i¢p __ Ny ok
sin”fe™" =4 \V 15 Y2(0,9). (12) " 3. The case of an ellipsoidal star

Substitution of Eqs[{11) anf{112) infd (2) ahd (1) and use the case of a black body star of uniform surface temper-
of the orthogonality properties of the spherical harmonics yietdure, the surface intensity is isotropic. Since we assume the
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Fig.4. The normalized scattered flufk for MacLaurin spheroids as Fig. 6. Plot of p and f, with the time ast/II,, for a non-rotating
in Fig.[3. star having an oscillation along ttheaxis with pulsation periodI,,
fractional amplitudé = 0.1, and phasé\ = 0. See text for discussion.

T
04 f
r 1 respectively (see Fig. 2), the projected area is (c.f., Al-Malki
I ] 1992)
e T A= |V + (aen)? + ()| (18)
| ‘ | where(\, p, v) = (cos psind, sin g sin 1, cos ).
E ok - Inserting Eqs[(1l7) and (18) into Ef.{16), we obtain the ex-
5 L | pression
i 1 Tim = L. N fim (19)
-0.2 f _
L 1 where the column density
i ) N = d 20
;i i | ntwyar (20)
Lo \ ] and the coefficient
0.4 -0.2 0 0.2 0.4 r  som
q (%) fim = / / A9, 0) Y5 (9, @) dpsind do. (21)
Fig.5. Plot of qu-plane locus for a rotating binary with parameters 00 )
b=2,a=c=1,andi = 0°, 30°, 60°, and85°. Note that the values gf,,, are now functions of the star’s shape

and size only (i.e., of, b, andc). From symmetry it is clear that
fo1 = fa,—1 = 0, and faa = fo _o. The termsf;,,, are real for
envelope is largér > R), we treat the illumination as beingl = m = 0, [ = 2 and m= £2,0. The f;,,, values that relate
radially directed only and express the incident flux in terms & the stellar anisotropy play a similar role in determining the
the star's projected ared. (9, ¢) as seen by the scattering elobserved polarization as does the shape feetpof Brown &
ement located atr, ¥, ). The incident stellar radiation field isMcLean (1977) — the latter being related to the oblateness or
thus given by prolateness of the envelope but the former to that of the star.
A.(9.0) The scattered flux and Stokes parameters reduce to
«\U,

r2 ’ (17) TI* ™ 3 . 2.
Fse = -z | VAT Joo + \/; 5 f22 sin” i cos 24

wherel, is the isotropic intensity of the stellar surface ah@
is the solid angle subtended by the source at the scatterer. For 1 5.
an ellipsoidal star with axe@, b, ¢) alongOX, OY, andOZ, +5/f20 (3cos™i—1)| ¢ (22)

F(r,9,¢) = I, AQ = I,
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and 0.1

e = 01 [ ‘f

* 3’7— I* 2’/T ]. 2. 0.05 i ,: 0.05 i ,:

zZ" = 477D2V15{2f22 [ (1 + cos” i) cos 2¢ R m i m
& % 0

3 ° r 1° r 1

—2icosisin2¢s] + \/;fm sin® } : (23) o005 \Q/ 41 -oo0s W =

L =0 ] e ,=30" ]

-0.1

| | | | | .
—-0.1-0.05 0 0.05 0.1 -0.1-0.05 0 0.05 0.1

wherer = oN is the radial optical depth of the envelope, o

and we have substituted fdiy, 5,v) = (0,4,¢s) to give o) o0
R(0,4, ¢) = 1.

For most practical applications (also in the observational | [/77 "7 T
situation), one is interested in the normalized scattered flux and 01 == ———

Stokes parameters defined bft, g, v) = (Fse, Q,U)/Frots 0.05
where the total observed fluk,,; includes both the scattered
light and the direct starlight. This latter componentAis = =
I.A.(i, )/ D?, where the projected ared, is of course that -o0.05

G

AR R B i

seen by the observer. Thus, the total flux is given by . -0.1 285 ]
I D? I TN TR T
* . —-0.1-0.05 0 0.05 0.1 0 90 180 270 360
]:tot = ﬁ A* (Z7 ¢s) + T*fsc . (24) q(%) o,

Using the normalized Stokes parameters, the degree of pofd@ 7. Thequ-plane locus for a full period of a rotating star with os-

ization isp = /% + 2 and the polarization position angle iscillation inb of § = 0.1, A = 0, andw,t = ¢. (i.e., the pulsation
b = 1 tan—l(u/q) period equals the rotation period). The different cases are for inclina-
p .

. . . C X and polarimetric variables are plotted against rotation phase, with
i%])r::?er (tihs S\ﬁ]t;enzei Ilz%hter?]rsggéizsi2f;2§r)1((lasr?én;|meer:\r/lg|ggg§"d beingp, dottedq, short dash, the upper long dashed line shows

?‘S, and the lower long dashed linefs./ F..
when compared to the results of Brown & McLean (1977) for

the scattered light properties of a spherical source embedded in

an axisymmetric envelope. For an axisymmetric star, the fac-

tor fi m = 0, hence from Eq[{23)l/ is identically zero and For illustration purposes we adopt a physically reasonable
Q « sin? 4, just as in Brown & McLean. The main difference isvalue for the envelope optical depth of= 0.1. The degree

the somewhat more complicated dependence on viewing inelf-polarization does not scale linearly with optical depth unless
nation in the case of an anisotropic source, the reason being thatscattered light constitutes only a small fraction of the direct
the direct stellar flux varies with inclination, so thet Q/F;.,  Starlight. The latter is usually true in most cases of physical
will not vary assin?i in general but only when the scatterednterest, but is not generally true whenb, or ¢ are small, in

flux is considerably smaller than the direct stellar contributiomhich caseF, may decrease quite rapidly as comparedia

Note that the expressions derived here for an anisotropic sourceThe projected ared, will be the primary factor in de-
generalizes the work of Gnedin et al. (1976), which was a &rmining the polarization. We expect the maximum polariza-
dimensional model for ellipsoidal effects in close X-ray bindion to occur for cases of maximum scattered light and mini-
ries. In the following the results for an ellipsoidal source amsum projected area along the line of sight. In the extreme case
applied to cases involving distorted stars, binary stars, and pefi-A. — 0 along the line of sight7, = 0, f; = 1, and
sating stars. (¢,u) = (Q,U)/Fs. Note that for this case, the Stokes param-
eters become independent of the optical depth in the envelope.
By symmetry the minimum polarization will be zero for any
line of sight where the projected stellar area appears circular.
There are various mechanisms for effecting deviations of a star

from spherlcal_ symmetry, thus providing an anisotropic SOUrCRy  plate and prolate stars

Here we consider the examples of (a) a single fast rotating star,
for which we approximate the star as an oblate ellipsoid, (Rotating stars can undergo considerable distortion. For mod-
a binary system in which the more luminous component hagla of main-sequence stars rotating near break-up speed, the
zero velocity surface approximated by a prolate ellipsoid, aeapected distortion (in terms of equatorial to polar radius) for
(c) non-radially oscillating stars, for which the ellipsoid axestars in uniform rotation is about 1.2 (Papaloizou & Whelan
are functions of time. In this latter case, no attempt will b£973; Tassoul 1978). Ostriker & Bodenheimer (1968) modeled
made to accurately determine the oscillation modes of the statating white dwarfs and showed that the distortion can be as
but simply to assume that at any phase the star's shape catabge as 4. Such a value would produce a polarization of about
represented by an ellipsoid. 2.6% for an envelope with = 0.1 (see Fig. 3).

4. Case studies for polarization from ellipsoidal stars
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Fig.8. As in Fig[d, but for the case where the pulsation period Big. 10. With format similar to FiglJ7, a plot of polarization and

twice that of rotation. The plotted figure is for one pulsation periogyith time ast /11, for a rotating star, having oscillations in three axes:

corresponding to two rotation periods, hence the valugsaxtends the a-axis withd = 0.05, A = 7/2, andw, = 47 /Il,; the b-axis

to 720° instead of360° as in the Figs. 7, 9, and 10. with § = 0.1, A = 0, andw, = 27/Il,; and thec-axis with§ =
0.08, A = 7/2, andw, = 47 /II,. The cases for different viewing

T | — 01 [ — L — inCIinatiOnS are indicated-

(D

e b b B
ul .

0.0 andc. Using Eqgs.[(2R)E(24), the scattered flux and polarization

of such models can be calculated.
Figs. 3 and 4 show the degree of polarization and the frac-

D

TF\?’\H‘H\\ e b b

~0.05 —0.05 tional scattered flu¥,./Fi.. for ellipsoidal configurations in
01 f i=0 01 F i,=3 which ¢ = b andc (along the axis of rotation) is allowed to
7(‘)1‘ e (‘) e ‘0‘1 7[‘”‘ “‘ (‘) 7,1 vary.Note that is normalized to:. Curves are shown for dif-

q(%) q(%) ferent values of the inclination (not to be confused with the
complex number, i). Deviation from thén? ; behavior of the
T e polarization (Brown & McLean 1977) results from the variation

[ ]
o1 E ol ] of the direct flux along the line of sight. For oblate stars the net
0.05 = N A polarization is perpendicular to the projection of the rotation
~ - Or ™\ 1 W axis on the sky, and for prolate it is parallel. Even with modest
¥ 9 0 /e N/ o . . P PETI . .
= F L N ] distortions, significant polarization is produced: for a star with
005 F E i 1 a=b=1,¢=0.9 andr = 0.1, the polarizatiorp is about
: . 01 [ 1 0.1%ati = 90°.
01 ‘1‘5:‘6‘: “1‘785 From the above analysis, we calculate a maximum polariza-
-0.1 0 0.1 O 90 180 270 360 tion of 20% for a flat disk star viewed edge on (ie= b = 1,

a(%) ¢, c = 0.0,7 = 90°, and¢ps = 0°), for which zero projected
aﬁ{ellar area will be observed so that the flux consists entirely
é)_f the scattered component and none from direct starlight. The
maximum polarization is the same for any optical deptf 1,
becauseZ* and Fi, = Fi. both depend linearly on, which
then disappears in the ratio fpr

Fig. 9. As in Fig[4, but for the case where the pulsation period is h
that of rotation. The plotted figure is for one rotation period, corr
sponding to two pulsation periods.

The stable equilibrium configurations of rotating stars ha\é‘e2 Binary stars
been extensively studied (Chandrasekhar 1963; also Tassoul
1978 for a summary). Essentially, we may take the surfacesidfe shape of a star filling its Roche lobe can be approxi-
equilibrium to be oblate (i.e., MacLaurin spheroids) or prolataated by an ellipsoid (Chandrasekhar 1963; Gnedin et al. 1976;
(Jacobi) ellipsoids characterized by the values of their axes Bochkarev et al. 1979). The eccentricities of the ellipsoid will
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evidently depend on the masses of the stars and on their septhe flux and polarization witkp, is shown. We have taken
aration. However, stable equilibrium configurations can be ex- A =0, § = 0.1, anda = ¢. Here the loci are double lobed

pected to have a ratio of major to minor axes of up to 2 for

owing to the changing shape of the star during rotation. The

typical mass ratios and separations (see Chandrasekhar 1963size of the lobes shrink in with increasing. Values of

Tassoul 1978).

are about 0.09 with only small variations.

For the extreme example of such binaries, consider one wigh II, = nll,. For integem, the loci are described times per

a = candb/a = 2. Taking the envelope optical depth to be
7 = 0.1, the locus of¢ andu throughout the course of one
orbital period (i.e., ag, varies from 0 to2x) is a circle for

1 = 0°, but becomes increasingly elliptical with more edge-
on viewing inclinations, eventually degenerating to linear at
i = 90° (Fig.5). The locus is described twice in one period.
The normalized scattered flyk is constant at a value of 0.08

for a pole-on viewing perspective, increasing to a maximum &

1 approache80°. The value off; peaks at 0.15 for = 90° and
¢s = 90° or ¢ = 270°, phases that correspond to minimum

pulsation period. Fig. 8 shows the variations for different
inclinations withn = 2. This combined effect of rotation
and pulsation may explain the multiple modes observed in
some pulsating stars (e.@i,Cep [Becker 1986]). The pat-
tern gets more complicated and shrinks in overall scale as
i increases. Againf; has values of 0.09 with only small
variations.

II, = vII,. Herev = n/m is a rational number expressed
in its lowest terms. The period ipand« will be mII, /2.

Fig. 9 shows theyu-loci for v = 1/2. If v is an irrational

direct stellar flux emitted into the line of sight. number, then theu-locus will not close.

The above analysis is easily generalized to pulsations along
several axes. We will consider the case of stellar pulsation in

. : . three directions, using: arraxis pulsation withh = 0.05, A =
As a simple model of a non-radially pulsating (NRP) star, Weé2’ andw, — 47/I1, b-axis pulsation witts — 0.1, A — 0,

approximate the star’s shape as a series of ellipsoids descri gw — 97 /T1,; and c-axis pulsation withs — 0.08, A —
. . . . H P — P - . 1 -
by time varying axes, b, andc. Such possible orthogonality |n7rr{2, andw, — 47 /I1,. The qu-loci for a rotating star of the

the oscillations was proposed by Serkowski (1970) in relatiQ bove values is shown in Fig. 10. In general, the figures become
to his observation of RV Tau stars which showed a change in t%e ; T —— i

: . o . pore complicated as the number of oscillating axes increases,
brightness of about 5 magnitudes. Such variations will aﬁecttaﬁd the value of maximum increases as well, but by a small
isn(ztztrfsr?ig ﬂltji)rf ;C (?es Vgﬁg:ﬁ;g%g'tfgt f(l)tg’i‘z’;:(?nresgtt'?natlglaaector. Evidently, as the number of parameters describing the

ng P P ] driations in the stellar distortion and phase increases, so does

and position angle. It appears that many variable stars have ihlg complexity of the behavior of g, u, and f
kind of oscillation (e.g., Omicron Ceti, W Vir, and RR Lyrae). plexity > & Uy 5
The distortion from sphericity may be up to 90% (i.€.q or

b/a = 0.1; see Sect.4.1). A distortion of 20% adequately a®: Conclusions

counts for the typical polarimetric variation (Karovska et ajp model for anisotropic flux and Thomson or Rayleigh single
1992 for Omicron Ceti). scattering in spherical circumstellar envelopes has been derived,
Consider a non-rotating star that oscillates along/tagis,  the analysis involving full use of the properties of spherical har-
andassumethat= 1+ cos(wpt+A), wherej isthe fractional monics under rotations. Applications of the model to an ellip-
distortion amplitude from spherical symmetny, = 27 /I,  soidal black body source shows that the highest possible polar-
with II,, the pulsation period, anfl is the phase. We have takenzation will be 20%, in which case the total observed flux is the
a = ¢, and have accordingly normalized thexis. Fig. 6 shows scattered flux. This limit occurs for the pathological case of a
the time variation irp and f; for this kind of pulsation, when star of zero projected area when viewed edge on; however, for
the star is atys = 0° or 180° (since the star is not rotating,  more realistic cases, the expected polarization will be around
remains fixed). There is no inclination dependence here becaysgor smaller.
the variations are along thieaxis, hence at a given time, the  Thjs study shows that the polarization produced by an ellip-
projected stellar area far, = 0° or 180° remains the same for spjidal star with a spherical envelope is comparable to that from
any:. As the star goes from oblate to prolate, the polarizatigispherical point source star with an ellipsoidal envelope (see
position angle undergoesia“ rotation. Brown & McLean 1977). The degree of the polarization pre-
In the case of both stellar rotation and pulsation, the forgjcted by the model for physically reasonable distortions and
of the variations in the Stokes parameters will in general alg@ctron densities in the scattering envelope are fully in accord
depend on the rotation peridfl.. There are dynamical reasonsyith observations. For a single star that is not undergoing pul-
to expect these periods to be related (Becker 1986). The poltions, this mechanism for producing polarization cannot be
ization and scattered flux can be calculated from the resultsdyservationa”y distinguished from that proposed previousiy by
Sect. 4.1, by taking, = w;t wherew, = 27 /IL,. Brown & McLean from polarization data alone. However, from
We shall deal with three generic cases: spectroscopic measurements of line profiles, such a distinction
could possibly be made.
1. II, = 1I,. Fig. 7 plots the changes in the-plane in panels The analysis presented here is easily generalized to more
a, b, and c as the star rotates, and in 7d the variationscoimplicated anisotropic fluxes. We have concentrated on the

4.3. Non-radially pulsating stars
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anisotropies in the flux from the star that are produced by r0ellins G.W.,, Il., Buerger P.F., 1974, In: Gehrels T. (ed.) Planets, Stars,
tational distortion. The technique can be extended to study the and Nebulae Studied with Photopolarimetry. University of Arizona
consequences of spots on the stellar surface for the observed’ress, 663

polarization. To isolate the effects of stellar anisotropy, we hafgx G-K., 1991, ApJ 379, 663

here concentrated on the cases where the envelope is spheﬁ@él.G-K-’ 1993, MNRAS 260, 513

Generalization to include the more realistic case where ther& & &K, Brown J.C., 1991, ApJ 375, 300

. ) . .Gnedin Yu.N., Silant'ev N.A., Shibanov Yu.A., 1976, SvA 20, 530
also an aspherical circumstellar envelope will be presented INSsch B.M. CassinelliJ P.. 1976 ApJ 208, 253

future paper. Jackson J.D., 1975, Classical Electrodynamics. 2nd ed., J. Wiley &
Son, New York
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