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Abstract. Expressions are developed for the flux and polariza-
tion of radiation scattered by a spherically symmetric envelope
for a central point stellar light source that radiates anisotrop-
ically. These are obtained in terms of the components of the
spherical harmonics of the flux anisotropy from the source. Such
anisotropy can arise from stellar spots, or from distortion of the
star through rotation, pulsation, or magnetic effects. Explicit
expressions for the Stokes parameters are obtained in the case
of an ellipsoidal star of uniform surface brightness. It is thus
shown that even when the scattering envelope is spherical, ob-
servationally significant polarization can arise from stars with
physically realistic degrees of distortion. The time dependence
of the polarization is computed for models of ellipsoidal stars
in the cases of pure rotation, pure pulsation, and both rotation
and pulsation.

Key words: polarization – stars: binaries: general – stars: cir-
cumstellar matter – stars: oscillations – stars: rotation

1. Introduction

Following the first general analytic treatment by Brown &
McLean (1977) of polarization of starlight from an unpolar-
ized isotropic point light source produced by single scattering
of electrons in an axisymmetric circumstellar envelope, of oth-
erwise arbitrary shape, Brown et al. (1978) treated the case of
multiple light sources in optically thin envelopes of arbitrary
shape and applied the theory to rotating binary systems (c.f.,
also Rudy & Kemp 1978). Cassinelli et al. (1987) and Brown
et al. (1989) incorporated the effects of the finite size of the star
as a light source. Milgrom (1978), Brown & Fox (1989), Fox &
Brown (1991), and Fox (1991) considered the consequences of
occultation effects by the star for the observed polarization of
circumstellar envelopes. Simmons (1982, 1983) generalized the
work of Brown & McLean (1977) and of Brown et al. (1978)
to Mie scattering in anisotropic envelopes. However, in all of
these preceding works, the light source has been treated as an
isotropic unpolarized emitter.
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Some special cases of anisotropic light source have been
considered. For example, Gnedin et al. (1976) calculated the
polarization for close X-ray binaries using a two dimensional
model of an ellipsoidal Roche lobe. Stamford & Watson (1980)
calculated the polarization produced by nonradially pulsating
stars. Fox (1993) showed how to compute the envelope polar-
ization when the stellar source is itself intrinsically polarized. He
even considered the scattering of polarized light from a stellar
source of arbitrary shape using an approach based on intensity
moments. His applications, however, were restricted to a spher-
ical star with limb polarization. Bjorkman & Bjorkman (1994)
have considered the effects of gravity darkening in a rapidly ro-
tating star for the UV continuum polarization of an axisymmet-
ric disk. In this first paper, we derive the effects of anisotropy of
the stellar light source using the formalism of Simmons (1982,
1983). Here we consider the case of a spherical envelope to
isolate the basic effects arising from stellar anisotropy, leaving
more general cases to later papers in the series.

Stars are in general anisotropic light sources. This
anisotropy arises mainly through two effects. First, the surface
brightness may be non-uniform owing to blemishes, for exam-
ple from magnetic fields, spots, or convection cells. Second, the
star may be non-spherical, the distortion arising from rotation,
pulsation, magnetic fields, or tidal effects of a companion star.
In such cases the polarization that is produced in the optically
thick stellar atmosphere is small unless the distortion is quite
significant (Haisch & Cassinelli 1976; Collins & Buerger 1974).
The small level of polarization from such atmospheres is largely
due to multiple scattering, which tends to destroy polarization.
Furthermore, the symmetry of the stellar surface produces can-
cellation and a low integrated polarization. On the other hand,
single scattering from an optically thin envelope may produce
significant polarization.

In the following section, we derive exact expressions for the
Stokes parameters for anisotropic light sources with spherical
envelopes and Thomson or Rayleigh scattering. In Sect. 3, the
general expressions are applied to the specific case of an ellip-
soidal star of uniform brightness, and in Sect. 4, these results are
used to compute the polarization expected from rotating stars,
X-ray binaries, and non-radially pulsating stars.
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Fig. 1. Definitions of the star and the observer coordinates. The point
O marks the emitting anisotropic star (point source), andP a general
scattering point in the envelope.OZ is the rotation axis, whereθ is the
scattering angle, andφ is the polarization direction. The Euler angles
areα = 0, β = i the inclination angle betweenOz andOZ, and
γ = φs the angle to theX-axis in thexy-plane. The scattering plane
is P ′OP .

2. The polarization arising from source anisotropy

We derive the general case of Rayleigh or Thomson scattering
in a circumstellar envelope, with the star located at its center.
Following, we restrict ourselves to a spherical envelope to il-
lustrate the basic effects of source anisotropy. For simplicity it
is assumed that the star is small compared to the size of the
envelope, thus allowing each scattering particle to be treated as
being illuminated by radiation from a unique direction. Hence,
the effects of occultation (e.g., Fox & Brown 1991) and finite
star depolarization (Cassinelli et al. 1987) are neglected. Even
for a spherical envelope, the occurrence of non-isotropic illu-
mination will lead to a net observed polarization, which will
depend on the angle between the direction of maximum flux
from the source and the line of sight.

We follow Simmons (1982, 1983) in using two coordi-
nate frames centered on the star. Referring to Fig. 1, the star’s
frame (X, Y, Z) has spherical coordinates(r, ϑ, ϕ). The ob-
server’s frame is described by(x, y, z) with spherical coordi-
nates(r, θ, φ). The axisOz is directed toward the observer, and
Ox is chosen so thatOZ lies in thex−z plane (see Fig. 1). The
orientation of frame(X, Y, Z) to that of(x, y, z) is given by the
Euler angles(α, β, γ) (c.f., Messiah 1962). With the adopted
orientation of axes, the Euler angles areα = 0, β = i the view-
ing inclination angle betweenOZ andOz, andγ = φs is the
angle betweenOX and thex − z plane (or the longitude of the
star). The angleφs thus measures the rotational position of the
star relative to the observer (see Fig. 2). Light scattered by an
electron at position(r, ϑ, ϕ) in the star frame will be scattered
through an angleθ in the observer’s system, and the orientation
of the scattering plane aboutz will be given byφ.
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Fig. 2. The ellipsoidal star coordinate system, where thec-axis is along
theZ-axis (i.e., the rotation axis).

In general the number density of scatterers may be writ-
ten asn(r, θ, φ) and the flux of unpolarized stellar radiation as
F(r, θ, φ). Then following Simmons (1982), the scattered flux
and Stokes parameters(Fsc, Q, U) of the scattered radiation at
the Earth a distanceD away are given by

Fsc
Z∗

}
=

1
2k2 D2

∫ ∫ ∫
n(r, θ, φ) F(r, θ, φ) r2

×
{

(i1 + i2)
(i1 − i2) exp(−2iφ) dr sin θ dθ dφ, (1)

whereZ∗ = Q − iU with i =
√−1, k = 2π/λ is the wave

number, andi1 andi2 are the scattering functions as defined by
van de Hulst (1957). The circular polarization will be taken as
zero.

For Thomson scattering by free electrons or Rayleigh scat-
tering, we have

i1 ± i2 =
3k2

8π
σ (1 ± cos2 θ) (2)

whereσ is the total scattering cross section (e.g., see Brown &
McLean 1977). For Thomson scatteringσ is independent of the
wave numberk whereas for Rayleigh scatteringσ ∝ k4 ∝ λ−4.

In relation to previous models, the basic result of source
anisotropy is to introduce the factorF(r, θ, φ) inside the integral
over the scattering volume. This complication of allowing both
F andn to be anisotropic immediately suggests that the effects
onQ andU will depend on whether the two functions enhance
or offset one another. In the case of a spherical envelope, the
problem simplifies owing to the number density being a function
of radius only, withn = n(r).

The illuminationF(r, θ, φ) in Eq. (1) describes the stellar
radiative properties in the observer’s system of coordinates, but
it is more natural to describe the behavior in terms of the stellar
system. Providing thatF varies smoothly, we may express it in
terms of spherical harmonics, viz

F(r, ϑ, ϕ) =
∞∑

l=0

m=l∑
m=−l

Flm(r) Ylm(ϑ, ϕ). (3)
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Using the rotation matrices described by Messiah (1962; c.f.,
Simmons 1983) to convert from the star’s frame to the ob-
server’s, we have

Ylm(ϑ, ϕ) =
n=l∑

n=−l

R(l)
nm(α, β, γ) Yln(θ, φ). (4)

Substituting this into Eq. (3) yields the transformation ofF .
Here, the required transformation is the one relatingF in the
star system to that for the observer’s system:

F(r, θ, φ) =
∞∑

l=0

m=l∑
m=−l

Flm(r)

×
n=l∑

n=−l

R(l)
nm(α, β, γ) Yln(θ, φ). (5)

Note thatYln is defined as in Jackson (1975), viz

Yln(θ, φ) = κln P n
l (cos θ)ei nφ (6)

with

κln =

√
(2l + 1) (l − n)!

4π (l + n)!
(7)

and

P n
l (x) = (−1)n (1 − x2)n/2 dn

dxn Pl(x), (8)

wherePl(x) are Legendre polynomials.
The rotation matrices are defined by

R(l)
nm(α, β, γ) = e−i nα r(l)

nm(β) e−i mγ , (9)

where from the Wigner formula,

r(l)
nm =

∑
t

(−1)t

√
(l + n)! (l − n)! (l + m)! (l − m)!

(l + n − t)! (l − m − t)! t! (t − n + m)!

×
[
cos

(
1
2
β

)]2l+n−m−2t

×
[
sin

(
1
2
β

)]2t−n+m

(10)

In Eq. (10), the summation extends over all integer values oft
for which the arguments of the factorials are positive or zero.
The number of terms in this sum is1+η, whereη is the smallest
of the four numbersl±n andl±m (c.f., Messiah 1962).

To evaluate the Stokes parameters of the scattered light,
we note that in Eq. (2) the scattering function factors can be
expressed as

1 + cos2 θ =
4
3

[√
4π Y ∗

00 +
√

π

5
Y ∗

20(θ)
]

(11)

and

sin2 θ e−2iφ = 4

√
2π

15
Y ∗

22(θ, φ). (12)

Substitution of Eqs. (11) and (12) into (2) and (1) and use
of the orthogonality properties of the spherical harmonics yield

Fig. 3. The percentage normalized polarizationp for MacLaurin
spheroids (oblate shapes,c < 1), and Jacobi ellipsoids (prolate shapes,
c > 1). The other two axes of the star are taken asa = b = 1. The view-
ing perspective is forφs = 0◦, but different inclinationsi as indicated.
The envelope has an optical depth ofτ = 0.1.

Fsc =
σ

4π D2

[ √
4π R

(0)
00 (α, β, γ) Γ00

+
√

π

5

m=2∑
m=−2

R
(2)
0m(α, β, γ) Γ2m

]
(13)

and

Z∗ =
3σ

4π D2

√
2π

15

m=2∑
m=−2

R
(2)
2m(α, β, γ) Γ2m (14)

where

Γlm =
∫ ∞

0
n(r) Flm(r) r2 dr, (15)

and

Flm(r) =
∫ π

0

∫ 2π

0
F(r, ϑ, ϕ) Y ∗

lm(ϑ, ϕ) dϕ sinϑ dϑ. (16)

The above expressions are exact and allow calculation of the
scattered flux and Stokes parameters for anyF(r, θ, φ), noting
that all the harmonics of the orderl or |m| higher than 2 are
zero for the case of Thomson and Rayleigh scattering. If the
star radiates isotropically, it is at once clear thatQ andU will
reduce to zero, and thatFsc will only depend on the constantΓ00
term in Eq. (13). However in general, the degree and direction
of polarization will depend on the properties of the coefficients
Γlm describing the anisotropy of the source.

3. The case of an ellipsoidal star

In the case of a black body star of uniform surface temper-
ature, the surface intensity is isotropic. Since we assume the
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Fig. 4. The normalized scattered fluxfs for MacLaurin spheroids as
in Fig. 3.

Fig. 5. Plot of qu-plane locus for a rotating binary with parameters
b = 2, a = c = 1, andi = 0◦, 30◦, 60◦, and85◦.

envelope is large(r � R), we treat the illumination as being
radially directed only and express the incident flux in terms of
the star’s projected areaA∗(ϑ, ϕ) as seen by the scattering el-
ement located at(r, ϑ, ϕ). The incident stellar radiation field is
thus given by

F(r, ϑ, ϕ) ≈ I∗ ∆Ω = I∗
A∗(ϑ, ϕ)

r2 , (17)

whereI∗ is the isotropic intensity of the stellar surface and∆Ω
is the solid angle subtended by the source at the scatterer. For
an ellipsoidal star with axes(a, b, c) alongOX, OY , andOZ,

Fig. 6. Plot of p and fs with the time ast/Πp, for a non-rotating
star having an oscillation along theb-axis with pulsation periodΠp,
fractional amplitudeδ = 0.1, and phase∆ = 0. See text for discussion.

respectively (see Fig. 2), the projected area is (c.f., Al-Malki
1992)

A∗ = π
∣∣∣√(bcλ)2 + (acµ)2 + (abν)2

∣∣∣ , (18)

where(λ, µ, ν) = (cos ϕ sinϑ, sinϕ sinϑ, cos ϑ).
Inserting Eqs. (17) and (18) into Eq. (16), we obtain the ex-

pression

Γlm = I∗ N flm (19)

where the column density

N =
∫ ∞

0
n(r) dr (20)

and the coefficient

flm =
∫ π

0

∫ 2π

0
A∗(ϑ, ϕ) Y ∗

lm(ϑ, ϕ) dϕ sinϑ dϑ. (21)

Note that the values offlm are now functions of the star’s shape
and size only (i.e., ofa, b, andc). From symmetry it is clear that
f21 = f2,−1 = 0, andf22 = f2,−2. The termsflm are real for
l = m = 0, l = 2 and m= ±2, 0. Theflm values that relate
to the stellar anisotropy play a similar role in determining the
observed polarization as does the shape factor(γ) of Brown &
McLean (1977) – the latter being related to the oblateness or
prolateness of the envelope but the former to that of the star.

The scattered flux and Stokes parameters reduce to

Fsc =
τ I∗

4π D2

{√
4π f00 +

√
π

5

[ √
3
2

f22 sin2 i cos 2φs

+
1
2
f20 (3 cos2 i − 1)

]}
. (22)



M.B. Al-Malki et al.: Scattering polarization due to light source anisotropy. I 923

and

Z∗ =
3τ I∗
4π D2

√
2π

15

{
1
2
f22

[
(1 + cos2 i) cos 2φs

−2i cos i sin 2φs] +

√
3
8
f20 sin2 i

}
. (23)

whereτ = σN is the radial optical depth of the envelope,
and we have substituted for(α, β, γ) = (0, i, φs) to give
R

(0)
00 (0, i, φs) = 1.

For most practical applications (also in the observational
situation), one is interested in the normalized scattered flux and
Stokes parameters defined by(fs, q, u) = (Fsc, Q, U)/Ftot,
where the total observed fluxFtot includes both the scattered
light and the direct starlight. This latter component isF∗ =
I∗A∗(i, φs)/D2, where the projected areaA∗ is of course that
seen by the observer. Thus, the total flux is given by

Ftot =
I∗
D2

[
A∗(i, φs) +

D2

I∗
Fsc

]
. (24)

Using the normalized Stokes parameters, the degree of polar-
ization isp =

√
q2 + u2 and the polarization position angle is

φp = 1
2 tan−1(u/q).

There are quite evident similarities between Eqs. (22) and
(23) for the scattered light properties of an axisymmetric light
source (i.e., whena = b) embedded in a spherical envelope
when compared to the results of Brown & McLean (1977) for
the scattered light properties of a spherical source embedded in
an axisymmetric envelope. For an axisymmetric star, the fac-
tor fl,m = 0, hence from Eq. (23),U is identically zero and
Q ∝ sin2 i, just as in Brown & McLean. The main difference is
the somewhat more complicated dependence on viewing incli-
nation in the case of an anisotropic source, the reason being that
the direct stellar flux varies with inclination, so thatq = Q/Ftot
will not vary assin2 i in general but only when the scattered
flux is considerably smaller than the direct stellar contribution.
Note that the expressions derived here for an anisotropic source
generalizes the work of Gnedin et al. (1976), which was a 2-
dimensional model for ellipsoidal effects in close X-ray bina-
ries. In the following the results for an ellipsoidal source are
applied to cases involving distorted stars, binary stars, and pul-
sating stars.

4. Case studies for polarization from ellipsoidal stars

There are various mechanisms for effecting deviations of a star
from spherical symmetry, thus providing an anisotropic source.
Here we consider the examples of (a) a single fast rotating star,
for which we approximate the star as an oblate ellipsoid, (b)
a binary system in which the more luminous component has a
zero velocity surface approximated by a prolate ellipsoid, and
(c) non-radially oscillating stars, for which the ellipsoid axes
are functions of time. In this latter case, no attempt will be
made to accurately determine the oscillation modes of the star,
but simply to assume that at any phase the star’s shape can be
represented by an ellipsoid.

Fig. 7. Thequ-plane locus for a full period of a rotating star with os-
cillation in b of δ = 0.1, ∆ = 0, andωpt = φs (i.e., the pulsation
period equals the rotation period). The different cases are for inclina-
tionsi = 0◦, 30◦, 60◦, and85◦, as labeled. In the case ofi = 85◦, the
flux and polarimetric variables are plotted against rotation phase, with
solid beingp, dottedq, short dashu, the upper long dashed line shows
fs, and the lower long dashed line isFsc/F∗.

For illustration purposes we adopt a physically reasonable
value for the envelope optical depth ofτ = 0.1. The degree
of polarization does not scale linearly with optical depth unless
the scattered light constitutes only a small fraction of the direct
starlight. The latter is usually true in most cases of physical
interest, but is not generally true whena, b, or c are small, in
which caseF∗ may decrease quite rapidly as compared toFsc.

The projected areaA∗ will be the primary factor in de-
termining the polarization. We expect the maximum polariza-
tion to occur for cases of maximum scattered light and mini-
mum projected area along the line of sight. In the extreme case
of A∗ → 0 along the line of sight,F∗ = 0, fs = 1, and
(q, u) = (Q, U)/Fsc. Note that for this case, the Stokes param-
eters become independent of the optical depth in the envelope.
By symmetry the minimum polarization will be zero for any
line of sight where the projected stellar area appears circular.

4.1. Oblate and prolate stars

Rotating stars can undergo considerable distortion. For mod-
els of main-sequence stars rotating near break-up speed, the
expected distortion (in terms of equatorial to polar radius) for
stars in uniform rotation is about 1.2 (Papaloizou & Whelan
1973; Tassoul 1978). Ostriker & Bodenheimer (1968) modeled
rotating white dwarfs and showed that the distortion can be as
large as 4. Such a value would produce a polarization of about
2.6% for an envelope withτ = 0.1 (see Fig. 3).
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Fig. 8. As in Fig. 7, but for the case where the pulsation period is
twice that of rotation. The plotted figure is for one pulsation period,
corresponding to two rotation periods, hence the value ofφs extends
to 720◦ instead of360◦ as in the Figs. 7, 9, and 10.

Fig. 9. As in Fig. 7, but for the case where the pulsation period is half
that of rotation. The plotted figure is for one rotation period, corre-
sponding to two pulsation periods.

The stable equilibrium configurations of rotating stars have
been extensively studied (Chandrasekhar 1963; also Tassoul
1978 for a summary). Essentially, we may take the surfaces of
equilibrium to be oblate (i.e., MacLaurin spheroids) or prolate
(Jacobi) ellipsoids characterized by the values of their axesa, b,

Fig. 10. With format similar to Fig. 7, a plot of polarization andfs

with time ast/Πp for a rotating star, having oscillations in three axes:
the a-axis with δ = 0.05, ∆ = π/2, andωp = 4π/Πp; the b-axis
with δ = 0.1, ∆ = 0, andωp = 2π/Πp; and thec-axis with δ =
0.08, ∆ = π/2, andωp = 4π/Πp. The cases for different viewing
inclinations are indicated.

andc. Using Eqs. (22)–(24), the scattered flux and polarization
of such models can be calculated.

Figs. 3 and 4 show the degree of polarization and the frac-
tional scattered fluxFsc/Ftot for ellipsoidal configurations in
which a = b andc (along the axis of rotation) is allowed to
vary. Note thatc is normalized toa. Curves are shown for dif-
ferent values of the inclinationi (not to be confused with the
complex number, i). Deviation from thesin2 i behavior of the
polarization (Brown & McLean 1977) results from the variation
of the direct flux along the line of sight. For oblate stars the net
polarization is perpendicular to the projection of the rotation
axis on the sky, and for prolate it is parallel. Even with modest
distortions, significant polarization is produced: for a star with
a = b = 1, c = 0.9, andτ = 0.1, the polarizationp is about
0.1% ati = 90◦.

From the above analysis, we calculate a maximum polariza-
tion of 20% for a flat disk star viewed edge on (i.e.,a = b = 1,
c = 0.0, i = 90◦, andφs = 0◦), for which zero projected
stellar area will be observed so that the flux consists entirely
of the scattered component and none from direct starlight. The
maximum polarization is the same for any optical depthτ . 1,
becauseZ∗ andFtot = Fsc both depend linearly onτ , which
then disappears in the ratio forp.

4.2. Binary stars

The shape of a star filling its Roche lobe can be approxi-
mated by an ellipsoid (Chandrasekhar 1963; Gnedin et al. 1976;
Bochkarev et al. 1979). The eccentricities of the ellipsoid will
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evidently depend on the masses of the stars and on their sep-
aration. However, stable equilibrium configurations can be ex-
pected to have a ratio of major to minor axes of up to 2 for
typical mass ratios and separations (see Chandrasekhar 1963;
Tassoul 1978).

For the extreme example of such binaries, consider one with
a = c andb/a = 2. Taking the envelope optical depth to be
τ = 0.1, the locus ofq andu throughout the course of one
orbital period (i.e., asφs varies from 0 to2π) is a circle for
i = 0◦, but becomes increasingly elliptical with more edge-
on viewing inclinations, eventually degenerating to linear at
i = 90◦ (Fig. 5). The locus is described twice in one period.
The normalized scattered fluxfs is constant at a value of 0.08
for a pole-on viewing perspective, increasing to a maximum as
i approaches90◦. The value offs peaks at 0.15 fori = 90◦ and
φs = 90◦ or φs = 270◦, phases that correspond to minimum
direct stellar flux emitted into the line of sight.

4.3. Non-radially pulsating stars

As a simple model of a non-radially pulsating (NRP) star, we
approximate the star’s shape as a series of ellipsoids described
by time varying axesa, b, andc. Such possible orthogonality in
the oscillations was proposed by Serkowski (1970) in relation
to his observation of RV Tau stars which showed a change in the
brightness of about 5 magnitudes. Such variations will affect the
scattered fluxFsc as well as the direct fluxF∗, and result in an
interesting time dependence of the polarization, both in value
and position angle. It appears that many variable stars have this
kind of oscillation (e.g., Omicron Ceti, W Vir, and RR Lyrae).
The distortion from sphericity may be up to 90% (i.e.,c/a or
b/a = 0.1; see Sect. 4.1). A distortion of 20% adequately ac-
counts for the typical polarimetric variation (Karovska et al.
1992 for Omicron Ceti).

Consider a non-rotating star that oscillates along they-axis,
and assume thatb = 1+δ cos(ωpt+∆), whereδ is the fractional
distortion amplitude from spherical symmetry,ωp = 2π/Πp
with Πp the pulsation period, and∆ is the phase. We have taken
a = c, and have accordingly normalized theb-axis. Fig. 6 shows
the time variation inp andfs for this kind of pulsation, when
the star is atφs = 0◦ or 180◦ (since the star is not rotating,φs
remains fixed). There is no inclination dependence here because
the variations are along theb-axis, hence at a given time, the
projected stellar area forφs = 0◦ or 180◦ remains the same for
any i. As the star goes from oblate to prolate, the polarization
position angle undergoes a90◦ rotation.

In the case of both stellar rotation and pulsation, the form
of the variations in the Stokes parameters will in general also
depend on the rotation periodΠr. There are dynamical reasons
to expect these periods to be related (Becker 1986). The polar-
ization and scattered flux can be calculated from the results of
Sect. 4.1, by takingφs = ωrt whereωr = 2π/Πr.

We shall deal with three generic cases:

1. Πp = Πr. Fig. 7 plots the changes in thequ-plane in panels
a, b, and c as the star rotates, and in 7d the variations of

the flux and polarization withφs is shown. We have taken
∆ = 0, δ = 0.1, anda = c. Here the loci are double lobed
owing to the changing shape of the star during rotation. The
size of the lobes shrink inu with increasingi. Values offs
are about 0.09 with only small variations.

2. Πp = nΠr. For integern, the loci are describedn times per
pulsation period. Fig. 8 shows thequ variations for different
inclinations withn = 2. This combined effect of rotation
and pulsation may explain the multiple modes observed in
some pulsating stars (e.g.,β Cep [Becker 1986]). The pat-
tern gets more complicated and shrinks in overall scale as
i increases. Again,fs has values of 0.09 with only small
variations.

3. Πp = νΠr. Hereν = n/m is a rational number expressed
in its lowest terms. The period inq andu will be mΠr/2.
Fig. 9 shows thequ-loci for ν = 1/2. If ν is an irrational
number, then thequ-locus will not close.

The above analysis is easily generalized to pulsations along
several axes. We will consider the case of stellar pulsation in
three directions, using: ana-axis pulsation withδ = 0.05, ∆ =
π/2, andωp = 4π/Πp; b-axis pulsation withδ = 0.1, ∆ = 0,
andωp = 2π/Πp; andc-axis pulsation withδ = 0.08, ∆ =
π/2, andωp = 4π/Πp. Thequ-loci for a rotating star of the
above values is shown in Fig. 10. In general, the figures become
more complicated as the number of oscillating axes increases,
and the value of maximump increases as well, but by a small
factor. Evidently, as the number of parameters describing the
variations in the stellar distortion and phase increases, so does
the complexity of the behavior ofp, q, u, andfs.

5. Conclusions

A model for anisotropic flux and Thomson or Rayleigh single
scattering in spherical circumstellar envelopes has been derived,
the analysis involving full use of the properties of spherical har-
monics under rotations. Applications of the model to an ellip-
soidal black body source shows that the highest possible polar-
ization will be 20%, in which case the total observed flux is the
scattered flux. This limit occurs for the pathological case of a
star of zero projected area when viewed edge on; however, for
more realistic cases, the expected polarization will be around
1% or smaller.

This study shows that the polarization produced by an ellip-
soidal star with a spherical envelope is comparable to that from
a spherical point source star with an ellipsoidal envelope (see
Brown & McLean 1977). The degree of the polarization pre-
dicted by the model for physically reasonable distortions and
electron densities in the scattering envelope are fully in accord
with observations. For a single star that is not undergoing pul-
sations, this mechanism for producing polarization cannot be
observationally distinguished from that proposed previously by
Brown & McLean from polarization data alone. However, from
spectroscopic measurements of line profiles, such a distinction
could possibly be made.

The analysis presented here is easily generalized to more
complicated anisotropic fluxes. We have concentrated on the
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anisotropies in the flux from the star that are produced by ro-
tational distortion. The technique can be extended to study the
consequences of spots on the stellar surface for the observed
polarization. To isolate the effects of stellar anisotropy, we have
here concentrated on the cases where the envelope is spherical.
Generalization to include the more realistic case where there is
also an aspherical circumstellar envelope will be presented in a
future paper.
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