Forum Springer Astron. Astrophys.
Forum Whats New Search Orders

Astron. Astrophys. 349, 697-728 (1999)

Next Section Table of Contents

Halo correlations in nonlinear cosmic density fields

F. Bernardeau and R. Schaeffer

Service de Physique Théorique, C.E. de Saclay, F-91191 Gif-sur-Yvette Cedex, France

Received 19 March 1999 / Accepted 18 June 1999


The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters.

The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter [FORMULA] where m is the mass of the halo, r its size and [FORMULA] is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, [FORMULA] in the rare halo limit.

Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (i.e. , naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.

Key words: cosmology: theory – cosmology: dark matter – cosmology: large-scale structure of Universe

Send offprint requests to: F. Bernardeau

This article contains no SIMBAD objects.


Next Section Table of Contents

© European Southern Observatory (ESO) 1999

Online publication: September 13, 1999