SpringerLink
Forum Springer Astron. Astrophys.
Forum Whats New Search Orders


Astron. Astrophys. 350, 694-704 (1999)

Next Section Table of Contents

A class of self-gravitating accretion disks

G. Bertin and G. Lodato

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Received 26 March 1999 / Accepted 6 August 1999

Abstract

We consider a class of steady-state self-gravitating accretion disks for which efficient cooling mechanisms are assumed to operate so that the disk is self-regulated at a condition of approximate marginal Jeans stability. In an earlier paper, this scenario had been shown to lead naturally, in the absence of a central point mass, to a self-similar solution characterized by a flat rotation curve. In this article we investigate the entire parameter space available for such self-regulated accretion disks and provide two non-trivial extensions of the model. The first extension is that of a bimodal disk, obtained by partially relaxing the self-regulation constraint, so that full matching with an inner "standard" Keplerian accretion disk takes place. The second extension is the construction of self-regulated accretion disks embedded in a diffuse spherical "halo". The analysis is further strengthened by a careful discussion of the vertical structure of the disk, in such a way that the transition from self-gravity dominated to non-gravitating disks is covered uniformly.

Key words: accretion, accretion disks – gravitation – hydrodynamics

Send offprint requests to: G. Lodato (lodato@cibs.sns.it)

SIMBAD Objects

Contents

Next Section Table of Contents

© European Southern Observatory (ESO) 1999

Online publication: October 4, 1999
helpdesk.link@springer.de