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Abstract. A new formalism is introduced for the transfer ofpresent, analytical solutions exist for only very limited cases
polarized radiation. Stokes parameters are shown to be foand the known formal solutions (Landi Degl’'Innocenti & Landi
vectors in a Minkowski-like space and, most strikingly, the rd3egl’'Innocenti, 1985) do not offer, in the general case, any ad-
diative transfer equation (RTE) turns out to be an infinitesimahntage from the computational point of view. Apart from the
transformation under the Poinéafplus dilatations) group. A interest of a computable analytical solution by itself, it would be
solution to the transfer equation as a finite element of this groapgreater importance for testing numerical codes which nowa-

is proposed. days are considered acceptable only by observing tiomir
vergenceupon increasing number of layers. This is not a very
Key words: radiative transfer — polarization satisfactory situation. We think that the solution presented in

this paper is the first step towards a general solution suitable for
testing computations.
1. Introduction Why an analytical solution could not be found so far is our
first question. It is our belief that group theory is the key to the
Since the pioneering paper of Unno (1956) in which for they|ytion and that explains why it had not been reached up to
first time a transfer equation was derived for polarized light iow (this could already be understood from the conclusions in
the presence of a magnetic field, a number of attempts hauger | which stressed the importance of the non-commutativity
been made to obtain a solution for it. Rachkowksy (1967), aft matrices in this problem, but it is still clearer here). Group
ter completing the equation by adding anomalous dispersi@ory is not common in astronomical literature. However the
effects, gave the first analytical solution for the case of MilngxTE of polarized light has become a more and more important
Eddington atmospheres. While numerical solutions were mq§gplem in astrophysics, related, for instance, to the measure-
and more successful (Wittmann, 1974; Landi Degl'Innocenfjyent of magnetic fields via the Zeeman or Hanle effects. Hence
1976; Rees et al., 1989; Bellot Rubio et al., 1998pez Ariste  group theory should be accessible to the concerned astrophysi-
& Semel, 1999) analytical trials struggled to overcome th&y community, and with its help we can give a method to find
problem of non-commuting absorption matrices. This prokhe solution, and explicitly give the full expression of the ana-
lem, already noted in a paper of Landi Degl'Innocenti & Landtical solution for the most general case. Any other particular
Degl'Innocenti (1985), is pointed out clearly in the work ogy general solution will benefit from the use of advanced linear
Semel & Lopez Ariste (1999) (hereafter referred as Paper dlgepbra, and so avoid wasted effort. Last but not least, it may
as the origin of all previous limitations. In this paper, deep "E:teepen our understanding of Stokes polarimetry.
sights are given on how to benefit from the physical significance e begin our research by disclosing the mathematical na-
of the various terms in the transfer equation to attain an analyire of the Stokes vector, starting with its physical definition and
cal solution as general as possible. Several transformations L@ﬁ@nding to the appropriate mathematics to treat our problem.
here to simplify the RTE seem to indicate that the physics ghtensive literature has already been devoted to the existing
the Stokes parameters is best described in geometrical terfafations between polarization and the Lorentz group, mainly
Indeed, we shall show in this paper that the Poiadatus di- from the optical point of view (see for instance Cloude 1986;
latations) group is at the origin of these geometrical aspectsvens & Kostinski 1993; Sridhar & Simon 1994 and references
and we shall use its algebraic properties to solve the problgharein). Usually these works take off from the Jones formal-
even for non—-commuting absorption matrices and give a geng&ah for polarized light (Jones, 1941) and develop these relations.
solution for this equation of transfer. Here a similar path is followed to show that the Stokes vectoris a
The fundamental problem addressed in the present pavectorinaMinkowski-like space. The demonstration is based
per is the existence of an analytical solution to the RTE. A the comparison between the usual definition for the Stokes
Send offprint requests &, Lopez Ariste parameters (see for example Shurcliff, 1962, or Jefferies, Lites
Correspondence tarturo.Lopez@obspm.fr & Skumanich, 1989) and the well-known relations between the
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definition of a spinor and its different representations (see for '
instance Landau & Lifshitz, 1971). In the same line of thought,
we will propose in Sect. 3thatthe RTE is just a representation
an infinitesimal Poincdr(plus dilatations) transformation in the \/\ Fully Polarized
Minkowski-like space where the 4—vectors are best described. Lt
This new interpretation of the equation of transfer suggests that
any solution to this equation must be a finite Poigdaansfor- o
mation. We calculate it in Sects. 4 and 5. We note that nothing
differentiates the transfer equation as written elsewhere in the
literature from a Poincértransformation, although at present a “°”"i‘i";h’f"" ] o
demonstration is not available, apart from this similarity. We an- g
ticipate that a finite Poincartransformation may be a solution
for the RTE.

The concepts of 4—vector, Minkowsky space or Lorentz and
Poincaé transformations must be understood throughout this
paperin their purest mathema_tlc_:al Sense, beyond their histor PI 1.3-dimensional projection of the light cone for the Stokes vector
meaning. These concepts originated in the framework of t g
special theory of relativity, however mathematics did abstraction ) ) ) .
of these tools and incorporated them into more general franBQOUr context, this surface contains all the different possibilities

of geometry and group theory. Therefore we define 4—vect(£?§ fully polarized light. The Stokes vector must be inside or,

as sets of 4 numbers characterized by their Minkowsky noffhthe limit, on thislight-cone(see Fig. 1) to obey condition

and described in a hyperbolic 4—dimensional space called {fi& An €xception to this parallelism with special relativity: the
Minkowsky space, which, in this paper, we will refer to as thackward light coneloes not have an equivalent with the Stokes

Minkowsky-like spacén order to stress the difference with the/€Ctors- _ o _

usual Minkowsky space used in relativity. Lorentz and Poiacar 10 consolidate and extend this interpretation of the Stokes
transformations describe movements in this space: generalip@fmeters we beginwith the definition of the Stokes parameters
translations and rotations. In the relativistic formalism thed t€rms of the electric field.

movements are interpreted as a change of reference system’* ransversal monochromatic light wave is completely de-

In this paper they are not given that meaning, but are seers§4Ped byE; andE,, the components of the electrical field ina
changes in the polarization state. The manipulation of thd¥d@ne perpendicular to the direction of the propagation of light,
concepts is identical here and in the relativistic formalism, # Following definitions in Landau & Lifshitz (1971), these two
one takes care in substituting the four Stokes parameters §8PONeNts can be arranged in a 2—dimensional vector. Since it

space and time, and for the speed its analogues as showlfapsforms linearly under the proper Lorentz group (ibid.) this
Sect. 3. vector can be called spinor of rank oneAs an illustration of

this kind of transformation, we profit from the fact that any el-

ement of this group in its 2—dimensional representation can be

written as a linear combination of the Pauli matrices (plus the

The 4 Stokes parameters are usually representdd®@yU, v, 2 x 2 identity matrix):

wherel stands for the total intensity of ligh®) andU for the lin- 10 1 0

ear polarized light in two axes rotated £y° one from the other, 0 = (0 1> ) 01 = (0 _1>

andV for the circularly polarized light. These four quantities .

are not completely free but must satisfy an energy conditiof; — (0 1) Oq = (O _Z> (5)
s U3 ’

there cannot be more polarized light than total light. This con- 1.0 i 0

dition suggests an interpretation of the Stokes parameters asd transform the electric field vector by these matrices:

4—vector in a Minkowski-like space. The norm of a vector in
h is defined E.\ _ [ E: E.,\ _( E:
such a space is defined as colg )=\g ) alg )= B,

2. Stokes parameters as a 4—vector

(4)

Y

1> =1" - Q* - U* — V2 € E, E E, —iE

. . . 02 = Y y 03 = V). (6)
Hence the above condition is naturally satisfied by vectors with \ £y E, B, iEy
apositive norm, in parallelism tame-likevectors in special rel- The result is always a new 2-dimensional electric field vector
ativity. Continuing this parallelism, lght-conecan be defined which describes a different state of polarization.
as the surface which obeys the condition A spinor of rank two can be easily constructed by multi-

1] =0 ) plying conveniently two spinors of rank one. For our particular
’ spinor we obtain

Y Yy

that is BBt BB
r_ x Ly -y
2= Q*+ U+ V2 @® - (%@ @@)
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where thex symbol stands for complex conjugated. This 2ndll the usual properties of the Stokes parameters are recovered
rank spinor is to be compared with tkeherency matriXsee in this space. For instance the sum of two 4—vectors is a hew
Born & Wolf 1980). In fact the last is defined for any given lighi—vector, a well-known property of the Stokes parameters. Con-
beam, and a mean over frequencies or time is necessary inttaey to the usual Minkowsky space, the absence dftuéward
above expression df to fulfill the definition. The average df light coneimplies not only that negative intensities are mean-
is a linear combination of matrices of the form referred. Sinéegless, but also that the negative of a Stokes vector does not
spinors of rank two form a linear vector space, any linear comaxist. Hence subtraction of Stokes vectors is naturally forbidden
bination of spinors will be a spinor as well. Hence the cohereniythis space.

matrix, defined usually as

(E,E?) (E E*> 3. Radiation transfer equation as a Poincae
J= ((EIE% <EzEZ>> , (plus dilatations) infinitesimal transformation
Y~z Y~y

L . Since the Stokes vector is a 4—vector in a Minkowski-like space,

is still a spinor of rank two. ;
. . N . agne may wonder what would be the meaning of a Lorentz trans-
Since a spinor built in this way has 4 independent compp- .
ormation over the Stokes parameters.

nents (the four entries of the matrix), there must exist a rela- .
. . ; . Homogeneous Lorentz transformations form a 6—parameter
tion between it and a 4-vector, which also has 4 mdepend?_nt

components. Technically speaking, both must be diffeneat ie group: 6 generators suffice to describe all possible infinites-

o ) : . imal transformations. These generators are (see for example
izations of the same irreducible representation of the Loreré?reiner 1990 or anv textbook in special relativity or aroun the-
group (Landau & Lifshitz 1971, page 55). The components ' y P y orgroup

1.
(I,Q,U,V) of this 4—vector are indeed related to the compg-ry) '
nents ofJ as — The threel x 4 matrices for 3-dimensional spatial rotations
1 00 0 O 0 0 0 O
I'=50u+x), 00 0 0 000 -1
L >a=1g 0 0 1] (000 0]
Q*i(n—zz)a 0 0 -1 0 01 0 0
1
U= §(J12+J21), 0 0 0 0
1 o, |0 0 10
V = §Z(J12—J21). (7) v 0 -1 O O
0 0 0O

These components are identical to the definition of the Stokes ) ] ]
parameters as given by Jefferietsal. (1989), or Born & Wolf  — Thethrgel x4 r_ngtqces for hyperbolic rotations (or Lorentz
(1980) for instance. The conclusion is evident: the resulting 4— P0OSts in relativistic terms)

vector, derived from the coherency matrix, a spinor of rank 2, is 01 00 0 01 0
the Stokes vector. This formalism can be given in an alternative 10 00 K — 0 0 0O
way: an usual basis for spinors is the set of Pauli matrices plus 0000”7 {100 0]
the 2 x 2 identity matrix. The coherency matrix expressed in 0 0 0O 0 0 0O
this basis has for coefficients the Stokes parameters
0 0 0 1
J=1Ioo+ Qo1+ Ucy+Vos (8) 0000
Ky =

. : . o 0 00O
Using this relation we can write in a more compact form rela-
; ) 1 0 00
tions (7) as:

An infinitesimal Lorentz transformation over the Stokes 4—
I = lTr o], (9) VvectorI can be expressed as a sum of generators multiplied
2 by their respective infinitesimal parameters:
where the vectar has four components, tBex 2 identity matrix — _,
and the 3 Pauli matrices, afrd?jenotes the trace operation of =1+ Z BiSid + Z ikl (10)
. i=Q, U,V i=Q,U,V
matrices.

These relations stress further the interpretation of the Stol&¥ convenience, we can re-write all these paramefgrs() in
parameters as a 4—vector in a Minkowski-like space. We stréggns of a common parameter, expressed in differential form
that when talking about a MinkowsKike space we mean that(we are dealing with an infinitesimal transformation)
the cqordinates in our 4—dimensional space are no longer space. (Ba, Bu,Bv) = —(pq, pu, pv) - dr, (11)
and time, but the Stokes parameters, contrary to the usual
Minkowski space used in relativistic formalism. On the othet — (e, w) = —(ng, 1w 1v) - dr. (12)
hand the underlyinhyperbolicgeometry is exactly the same in ! Everywhere in this paper we uge= diag(1, —1, -1, —1) as the
both cases, mathematically speaking they are the same spmeric for the Minkowski space
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And the infinitesimal transformation reads now: Matrix K can now be compared to the so-called absorption ma-
trix which appears in RTE (Landi Degl'lnnocenti, 1992; Jef-
feries et al., 1989). Coefficienf; gives the scalar absorption,
independent of polarization. This absorption has its equivalent
in a contraction (that is a negative dilatation) of the Stokes 4—
Given the infinitesimal character of the transformation, exector. The 3—vectayis responsible for the creation and absorp-
pressed explicitly by putting the common paraméiteiit easily tion of polarization, which is understood here to be a hyperbolic

I'=1—| Y pSi+ > nKi|Idr. (13)
i=Q,U,V i=Q,U,V

leads to a differential equation fdrin the variabler: rotation (or Lorentz boost) of the Stokes 4-vector. Finally the 3—
vector p gives the so-called Faraday rotation in Zeeman effect
iI = K, (14) and, asits name seems to indicate, it rotates the Stokes 4—vector
dr inside the 3-dimensional space of polarized states (also called
whereK’ is a4 x 4 matrix given by Poincaté spherg Note that from the previous paragraph it can-
not be stated that any infinitesimal Lorentz (plus dilatations)
K' = Z piSi + Z niKi = transformation is a transfer equation. We state that the absorp-
i=Q,U,V i=Q,U,V tion matrix as it is usually written elsewhere in the literature,
cannot be differentiated from an infinitesimal Lorentz transfor-
0 g nu ny mation (indeed we have decomposed the absorption matrix in
| ng O Py —pU the RTE in terms of the infinitesimal generators of the Lorentz
"N —-pvy O o |- transformations). In fact, it is well known that the actual ab-
wo puv —po O sorption matrix for Zeeman effect must still obey some further

) , _ _ . constraints. In this sense a general Lorentz (plus dilatations)
Matrix K !OOkS like the well-known absorption matriXansformation is too general: absorption matrices standing for
(Landi Degl'lnnocenti, 1992). At this point the possibility that, eq) physical process would constitute only a subset of all
the RTE could be written as an infinitesimal transformation inj,ssihle Lorentz (plus dilatations) transformations. While it is
volving the Lorentz group seems to be at hand. BUSLIll  o\igent that a further study of this relation is necessary, in this
differs from the general form of the absorption matrix. In paﬁaper we will only make use of thmathematical advantage
ticular the inclusion of a diagonal termis necessary if we want1g, 4 postpone the rest for a forthcoming paper.
take into a_ccounF the sca_llar apsorption represented bythe Eq. (15) is not yet the complete transfer equation. An in-
usual matrix. To include it we just add to the usual 6 generatq{§mqgeneous term, the emission vector, is still needed. For
of the Lorentz group the one for the dilatation transformationypis nurmose there are appropriate movements in the Minkowski
While dealing with the homogeneous group, we can represgptce. the homogeneous Lorentz group can be extended to the
the generator of dll_atatlons by the_< 4 identity matrix. We will inhomogeneous Poindagroup. This 10-parameters Lie group
repeat all the previous steps calling the new parameter for thig; es 6 infinitesimal generators with the Lorentz group and

transformation; : adds 4 more generatorB, Po, Py andPy/) to take into ac-
count translations along I, Q, U and V (what in relativistic for-
r'=1- |1+ Z 0:iSi + Z niK: | Idr, malism would be translations in time and space). These gener-
—oUv —oUv ators operate on a generic Stokes vector as follows:
to finally obtain: (1) (1)
dIf KI 15 nite 0 Pal= 0
dr™ (13) 0 0
whereK is given by 0 0
0 0
Pyl = PyI = 16
Kemlte 3 pSit Y miki= cE= 1= o (19
i=Q,U,V i=Q,U,V 0 1
After including dilatations, the infinitesimal inhomoge-
nr nQ nu nv neous transformation is given by
_ | " I PV —pPU
e —ov wr po | I'=T1-KIdr+dr Y jiP:I=1I-KIdr+Jdr(17)
nwvoopu —PQ I =Lo.uV

2 The dilatation transformation does not belong to the usual Lorer’(@e_re‘] is the emission vector. Some algebraic manlpulgtlons
group. A usual definition of the transformations belonging to this grofluivalent to those used for the homogeneous group will lead
is that they do not change the Lorentz norm of any 4—vector. By dd@ the complete radiative transfer equation.
nition, a dilatation transformation does change this norm. Fortunately It is interesting to note the fact that these generators allow
the new set of 7 generators is still a group. one to write an inhomogeneous term (the source function) in a
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pseudo-homogeneous way: the new reference axes. Inthe case of a fixed axis, just one gener-
ator suffices to describe the movement. If we call this generator
t, and the infinitesimal parameté¢, the finite transformation

’ F D
I'=I+|-K+ > jP;|Idr. results in

i=1,Q,U,V

A useful representation to understand this apparent paradoXi8 (§t) = exp <t /C df) :
the one using differential operators. Letusdall= 1, 1o = Q
and so on, and write Apparently, our problem is solved if we deal with a unique

generator per exponential. Hence, we can propose for instance
- 0 a solution in the form of a product of several exponentials, one
oI; for each generator:
wherei = I,Q,U, V. Itis evident that with such an operator,
relations (16) hold. All the other generators can be rewritten irH exp (§its)
this representation. For instance, the dilatation generator caribe'

P;

written Now the derivative of each exponential in the product can be
P easily calculated in a very compact form, and so the product of

D= Z Iiﬁ all of them, and consequently the new finite parameggfas
i=1,Q,U,V ! in the above example). But a new question arises: which order

and the generator of rotations in the pldA¥, for instance, is should be chosen for the exponentials? Again due to the non-
commutativity of the infinitesimal generators, different orders

0 0 i
So=—-Ty—+1Iy produce different results,

aIV 3IU’ egitiegjtj ?é eEjtjefiti, (18)

The interested reader will find good discussions on the represen-

tations of the Poinc&rgroup and the dilatation transformatioraind in general no particular order will be the solution. An answer
in Greiner (1990), Gourdin (1982) or Jones (1996) for example.this kind of problem has been given by Wei & Norman (1963).
Inwhat follows, we sketch the solution there proposed and apply
it to our particular problem. We start with the homogeneous
equation (just the Lorentz group plus dilatations) and in the
In view of the results obtained in the last section, the solutiont@xt section we will incorporate the inhomogeneous part and
the RTE appears to be quite straightforwardly a finite Poimcarandle the full Poincé&r group.

(plus dilatations) transformation. The important fact now is that The ordering problem can be recast as follows: we may say
we already know how to write such a finite transformation: that by introducing an order in the exponentials we introduce
we denote the 11 generatorstyya finite element of this group an error. In spite of this error, let us choose a particular order

4. Finite transformations as a solution

can always be written as for the exponentials and then substitute ghéwhich could be
calculated straightforwardly as the integrals over the path of the
exp Z &t ] correspondi'ng infinitesimal parameters) for some unspecified
r scalar functiong;:

whereg; are the parameters of the transformation for each movg exp (g;t;) - (29)

ment, the equivalent of angles for usual rotations. The next prab1,7

lem is how to calculate those finite parametgrom their in- . . . .

finitesimal counterparts), g and so on). Unfortunately this isThe new functiong; have to, in a certain SEnse, take into ac-
! ' c9unt the effect of th&; and correct the error introduced by

not an easy task. The problem resides in the non—commutati Y . :
of the generators. The next paragraph proposes a solution to\ﬁh chosen orc_Jer. EX|s_tence for th@séunchon_s can only be
| ensured after introducing the proposed solution into the RTE.

problem, but first we consider it useful to clarify why other apr o following consistency equation for thes is obtained as a
proaches will not work. Magnus (1954) (a brief introduction tg cessary condition for Eq. (19) to be a solution:

this paper can be found in the Appendix of the paper by Semeﬂg
Lopez Ariste, 1999) has already written a finite transformation i—1
in terms of such a unique exponential. A quick inspection ofK(7) = Z Gi(7) H exp(g;t;)
the expression given there illustrates why we consider that this i=1,7 j=1
calculation is not an easy task. Nevertheless some simple cases
can be proposed in which the relation betweeng&hand the
respective infinitesimal parameters is plain. For instance in the
case of 3—dimensional rotations it is always possible to trans-
form (by means of the Euler angles) our initial reference systemiere the dot denotes derivative over the integration variable
into another one for which the rotation axis is parallel to one @his equation was the aim of this section so far. A less heuristic

1
xXt; H GXp(fgjtj) s (20)
j=i—1
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but more direct way of introducing it is to look for a solutiortherefore there is no ordering problem associated with it. The
of the form (19) and introduce it into the transfer equation. It isitial problem of ordering 7 exponentials is reduced to ordering
straightforward to fall upon Eg. (20) as the condition for (19) ta subset of 3 exponentials; the order of each one dfithavith
be a solution. respect to thé’s generators or the identity being immaterial.

In what follows in this and the next sections we shall solve We can rewrite solution (19) using the new set of infinitesi-
Eq. (20) for thgy;’s. The details being quite technical, the readenal generators in explicit form as
may wish to skip this and go directly to Eq. (28). - - , S(r (7

Eqg. (20) is quite an involved equation. It requires caIcuIatioIn(T) = en(Men(nien(Nfien(nben(nt:
of a non negligible number of expressions of the form x e (b1 (M (1), (21)

exp(g;t;)t: exp(—gjt;). where a very s_pec.|al orde_r has alread_y been chosen. Different

o orders, while yielding equivalent solutions, can make calcula-
This is to be done by means of the Baker-Hausdorff formulgens affordable or desperate. With this problem in mind we
which states that have chosen a particular order.

Xye X — Y4 [X, Y]+ ~[X, [X, Y]] We now expresK in the new basis:
2!
1 K=Y aHi+> bl + 1
+§[ i i

In the form they have been written in the last section, tH¥€re

X, [X,[X, Y]] +-..

generators of the Lorentz group obey the following Lie algeb&a _ _}( +ino)
(with €451, the totally antisymmetric index): ! 9 \P@ TR
1 )

[Ki, K;] = —€ijnSk az = [0 +pv) +ilpy — pu)l

(Si,S;] = €ijnSk 1 )

az = - |nu —pv) —unv +p

[Si,Kj] _ Eiijk 3 4[( U V) ( \4 U)]

[S;,1] = 0 b, = aj,Vi=1,2,3.

K, 1] = 0, Calculation of the Baker—Hausdorff series for the new genera-

ors simplifies a lot, and Eq. (20) reads now:
which does not facilitate calculations at all. A suitable combtl- Impi a.(20) W

nation of generators will yield a new base of generators withaz a;H; — Z bili —nr1 (22)
gentler (from our point of view) Lie algebra. For instance, the i

following set, = grl+ gaHy + go [Ha + digsH1 — 493Hs]

Hy = S +iKg, +31 [—2igaH2 + (14 8g2g3) H1 + (2igs + 8ig3g2) Hs]
H2 = (KU — SV) — Z(KV + SU)7 +96L3 + g5 [LQ — 4ZgﬁL1 — 493'—3]

Hy = (KU + SV) + Z(KV - SU)7 444 [2Zg5|_2 + (1 + 89596) L, — (2296 + 8’Lg395) L3] .

L, = Hifori =1,2,3,

Comparing coefficients on both sides, and after proper rear-
to which we add the identityl], for completion, obeys the fol- rangementthe following set of differential equationsis obtained:
lowing commutation rules

g1 = —a1 + 4igzas
[Hi, Ho] = 2iHy, g2 = —2igaa; — (1 + 8g2g3)az
[Hi,H3] = —2iH3, g3 = 2igs3a; +4g§a2 —as
[Ha,Hs] = —4iHy, gs = —by — 4igghs
[L1,L2] = —2il,, g5 = 2igsb1 — (1 + 89596)b2
[L1,L3] = 2ils, g6 = —2igsby + 4g2by — bs
L, Ls] = 4ily, =
[H;,L;] = 0,Vi,J.

Allofthem share the same boundary condition, narpghy ) =
The initial algebra of 6 generators has been decomposed ifit¢o satisfy the boundary condition of the RTE.

two sub-algebras of 3 generators each, with the particularity that The functiong; can be integrated at once to give

each generator of one sub-algebra commutes with every gener- T

ator of the other one. The dilatations generator, which must pg7) = —/ n(7')dr'.
added to them, commutes with every other generator (remember T
that, while constrained to the homogeneous group, the dilates expected, because of the particularities of the Lie algebra,

tion generator can be represented by the identity matrix) athe set of equations faf - 3 is separated from the one fgy 5 6,

0
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and each set is the complex conjugated of the other, so thatitiieoduced it). This operator trivially obeys the homogeneous
solution tog, 5 ¢ is straightforward once the one for > 3 is  equation

given. Furthermore each set can be solved by quadrature, as

equations for; andg, depend only oy, whose equation is ——O(7, 70) = —KO(7, 70), (25)
disentangled from the others:

-
with initial condition

gs = ags + Bgs + 7, (23) O(r9,70) = 1.

where we have definedl = 4a,, § = 2ia; andy = —as. This Ed. (24) provides on its own a general analytical solution for the
is a Riccati equation, and for its solution the explicit depevolution operator.
dences ofi; » 3 on the integration variable are required. For This solution is a fully general expression for finite Lorentz
a constank matrix the solution is straightforward, and from itransformations plus dilatations. But radiative transfer cases do
those ofg, andg;. More complex dependences must be cargot cover the full spectrum of Lorentz transformations. In this
fully managed (see for example Clzena & Ramos (1998) andsense the obtained solution is too general, in agreement with
references therein for the integrability conditions of the Riccabiect. 3. As an illustration, consider the case whenpthend
equation). n’s are zero except fafg. The functiong; becomes

Before passing to the next section, where we will generalize i
the method to the full Poincargroup, we go back to Eq. (21).91 = —5 /UQdT,
Once we have integrated the Riccati equation and obtained all
theg;’s, we still need to calculate the exponentials. To this eﬁd‘d aterm of the form

we profit from a remarkable property of matridésandL;: cos g1 = cosh 1 / nodr
2

HY = L] = -1 appears in the final solution. The hyperbolic cosine grows

HZ =H3=L3=1L3=0, monotonously with its argument, therefore the intensity of the
] out-coming light would grow also monotonously for a semi-

by means of which: infinite atmosphere. This is a completely nonsensical result. To

recover physical sense one must impose some constraint on the

et = 1+ sin g, H , , > .
cosgii+singit allowed transformations. This constraint evidently imposes a

H
e = 1+ goHy relation betweemg andr;, whose explicit form is outside the
ests — 1 4 g3H3 scope of this paper, but which should be derived from the as-
el = cos g1l + sin guLy sumed physical processes. This example can be extrapolated to

all then’s and p's. The relations thus obtained will constrain
L the Lorentz transformations to a subset of matrices for which,
e = 1+ gols. nevertheless, the above solution (24) will remain valid.

e = 1+ gsly

The final complete solution for the homogeneous part results in ) ) )
5. Solution for the complete inhomogeneous equation

I(r) = (I +gs(7)Hs] - [1+ ga(7)H2] To solve the inhomogeneous equation, one would need to repeat
[cos g1 (7)1 + sin g1 (7)Hi] the calculations shown in the previous section, but this time for
“[1 4 gs(7)Ls] - [T+ g5(7)L2] - the whole Poinca@group. To recalculate everything with 4 more
: . generators involves a lot of work. The paper by Wei & Norman
[cos ga(T) 1 +singa(m)La] - explyr (T (7). (24) (1963) provides us with a way to avoid some of this work. The
The validity of this solution is almost evident: Its derivative rePoincaé group can be decomposed into the direct sum of a
sults in the RTE just by making use of the differential equatiorsemi-simple algebra and a radicaR (whose definitions can be

satisfied by the functiong,. found in that same paper for instance). In terms of the previously
This is a solution to the homogeneous equation used generators of the Poinearoup, the semi-simple algebra
is given by
d
%IL:*KIL' L = {H1,Hz2,H3, L1, L, L3},

Let us write this solution as the generators of the homogeneous part. The radical is given by
R = {]17 va PQ7 PU7 PV}a

I(r) = O(7,70)I (7o), . o .

the inhomogeneous part plus the identity. We will include the
where the explicit form 0O(r, 1) can be found by comparing dilatation transformation in the semi-simple algebra set for eas-
this expression with the complete one in Eq. (24). This operaioess. If we write the transfer equation as
O(r, 1) is oftenreferred to as thewvolution operato(see mainly
Landi Degl'lnnocenti & Landi Degl'lnnocenti 1985, who first%I =HI,
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then,H, an element of the Poindagroup plus dilatations, can P belongs to the radical which, by definition, is an ideal of
be decomposed into the Poincak group, so that in fact the ter@—'PO is just a

linear combination of the infinitesimal generatorsif
H=-K+P,

-1
whereK is the usual absorption matrix, an element of the h(go PO) = mil+ DoPr+ DiPg + DaPy + DyPy.
mogeneous group, arij which stands for the set of four trans-Obtaining the coefficient®; (with i = 0, 1, 2, 3) is quite long,
lations introduced in Sect. 3, is an element of both the radigak detailed calculation is to be found in the Appendix. This cal-
and the inhomogeneous part of the equation. In the last secti@iation constitutes by itself a demonstration of the first state-
we dealt with the homogeneous equation and found a solutipent of this paragraph for our particular case, a long one, but
for the evolution operatdd(r, 79) by using the Lorentz group which does not require further knowledge in group theory. The
plus dilatations. Now, it is easy to demonstrate that if we ap@xt step is to solve the equation
able to solve the equation d

d fIRZ(DOPI+D1PQ+D2PU+Dgpv)I

I = (0"(t,70)P(t)O(t, 7)) IR, dr
dt This is in fact a very easy equation, as evepycommutes with
a solution for the complete transfer equation can be writtendach other. The solution can be given at once as

the form

I _& 1 [T, Do(t)dt e ST, Di(t)dt,
I(7) = O(r, 7o) I (7). CONEE

In fact, this result is exactly equivalent to the formal solutiogPv /7, D2(t)dt _ Pv [ DaOdt - (10).

given by Landi Degl'lnnocenti & Landi Degl'Innocenti(1985).

To prove it, we note thad (¢, 7o) I g will give, by properties of Calculation of the exponentials is straightforward: Theare

the evolution operator, a nefiz (¢). The effect ofP is however the infinitesimal generators of translations in the four axes
independent of the actual value B (¢), we will always obtain I, Q,U,V, hence by exponentiation we recuperate the finite

that transformation:
Jr I Do(t)dt
PIz(t)= |79 | =7, 1) — T Jo, Da(t)dt
J.U R(T) R(TO) + f Q(t)dt
.,]V e , [ Ds(t)dt
where theyisare the |nf!n|tg3|mal pargmeters of the translation — Ix(70) + D(r, 7). @7
transformation: the emission vector in our particular case. The
previous equation results therefore in The last step is to put together the homogeneous and inho-
d mogeneous solutions by using expression (26). We obtain
—Ir=0""(t,m)J (1), .,
dt | I(7) = & Jo D% [ 4 go(7)Ha) - [14 ga(7)Hy]
which can be integrated at once: [cos g1 (7)1 + sin gy (7)H1] - [T + g6(7)Ls)]
In(7) = In(ro) + / 0~ (t, ) I (t)dt. (14 g5(7)La] - [eos ga ()1 + sin g (r)L]
0 “(I(19) + D(7,7)) . (28)
Combining it with the homogeneous solution, we obtain thgoe that this solution is general for all the radiative transfer
final complete solution: problems known to date in polarization, provided the source
function is given. As discussed in the previous section, it is

I(r)=0O(r,70) (IR(TO) +/ 0_1(75770)J(t)dt> : even too general.

° This solution is also independent of any model atmosphere.
And benefiting from the well known properties of the evoluThis is necessary to ensure its generality, but presents the prob-
tion operator, we can transform this expression into the formam of the integrability: have the integrals for thgs and the

solution given in the above referred paper: inhomogeneous vectd an analytical expression for alland ev-
T ery interesting case? The most likely answer is ho. But whatever
I(r) = O(r,70)Ir(10) +/ O(r,t)J (t)dt. the answer, physical intuition indicates that there must always

exist atleasta numerical solution to them. However further work
Hence, once the evolution operator is solved as shownritust be developed on the subject.
the previous section we can use this expression to obtain thelt is also important to note that we are proposing not just
complete solution. Instead of doing that, we shall proceed wiim expression as solution of the RTE, but a method: particular
the techniques provided by the group theory and obtain a cooases may ask for different orderings of the generators or even a
pletely equivalent but independent expressionligr different decomposition of the product of exponentials. We have
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seen that we can in any case give a solution in the form of sevi#arature. The advantages gained in the integration of the polar-
exponentials, but, for instance, when solving constant matized RTE warranted the efforts. We anticipate that new results
atmospheres it may be more interesting to consider only tinghe study of polarized light transfer in astrophysical problems
product of 3 exponentials, one with the generators a secondwill be achieved by the use of this and related techniques.

one for thel;’s, and a last for the dilatations, or even a sole

one, in which case the solution for the evolution operator cAgknowledgementsThe authors are indebted to M. Landolfi and M.
be written at once: Landi Degl'Innocenti for precious discussions and comments.

O(r,70) = exp =K(r =), Appendix A: solution for the radical

in accordance with Magnus’ solution (Magnus, 1954) or with _ . . .
the scalar—like exponential solution (Semel &pez Ariste, As e.xplamed in Sect. 5, we need to calculate, in order to obtain
1999). For any number of exponentials, the method will worﬁ?e final solution, a term of the form

the sole problem being to solve the subsequent scalar Iin?@plpo) ’ (A1)
equations and integrals. In all the casespapact and finite

expression for the solution is obtained and the problem is fghereOQ is the evolution operator, solution of the homogeneous
duced to the ability to integrate scalar expressions. equation, i.e.,

O(,79) = e%(Hagg2(TIH2gn (MM gg6(7)La gas ()L

6. Discussion and conclusion
x e74(T)k1ggr (7)1

In this paper we have introduced a new formalism to handle

Stokes parameters and radiative transfer equations for poRftd whereP is the inhomogeneous part of the transfer equation

ized light. In this formalism, the Stokes parameters appearV@Rich can be written as

a 4—vector in a Minkowski-like 4—dimensional space, and its

evolution in time looks mathematically as typical rotations, con- — J1(m)P1 +jo(1)Pq + ju(r)Pu + jv (T)Pv,

tractions and translations in this space. These movements gfg e thej; are the components of the emission vector. In a
K3 .

completely described by the transformations of the group Rfither effort to simplify the calculations, instead of this linear
Poincaé plus dilatations, &0+ 1 dimension group, well-known -4 nination we will use

from other areas of physics and mathematics. The RTE is shown
to be an infinitesimal transformation of this group. We therefore = j,P; + joPg + jaPa + jBP5,
propose that a solution to the RTE can be given in the form of a
finite transformation of the Poindaplus dilatations group. Ob-WhereP4 = Py + iPy, andPp is its complex conjugate.
taining of this solution from the variables present in the tran§onsequentlyj4 and;s are given by
fer equation raises some technical difficulties which have been
overcome by the use of the Wei-Norman method (Wei & Noria = 5 (ju — ijv)
man, 1963). The final obstacle is reduced to a scalar Riccati
equation. iB = 5 (v +ijv).
The Riccati equation is a well studied first order differential
equation, characterized by its quadratic term. This non-lineardyorking out expression (A1) implies the use of commutators
can at worst prevent an explicit solution, and usually makedt Hi, L; and the dilatations witR;. Those commutators, which
difficult to calculate. In any case the problem of giving a s@&an be found in any textbook on group theory, are Fpr
lution for the RTE will have been reduced from solving a 4—

dimensional vector equation to solving a scalar Riccati one.l” Hi] = —iPq
Whenever this Riccati equation can be integrated, a compléte, H2] = —P5
solution is obtained for the RTE. [Pr,H3] = —Pa.

Until now only numerical integration methods (see for in-
stance Reesetal., 1989, Bellot Rubio etal., 199&pez Ariste For P we have
& Semel, 1999) were capable of integrating non-con#tamt-

trices. The only way to test the validity of the solution and thg)@’ Hi] = —iP;
convergence rates was to compare them with previous mefhe, Ho] = Pa
ods, known to converge asymptotically. The solution present@d,, H3] = —P 4.

in this paper may allow a comparison with an analytically ex-

act solution. We anticipate that new numerical methods will Beor P 4

developed taking advantage of the analytical solution; perheIBs Hy]

faster and more precise than previous ones. AT
In order to obtain this solution we made use of a math&4,Ha] = —2P;

matical frame, group theory, rarely seen in the astrophysi¢Bly, Hs] = 0.

— P4
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And forPg where theSy, S1, S, S3 are shortcuts for
[Pp,Hi] = —iPp Sy = cosh gy - cos go, (A4)
[P Ha = —2Pg S1 = sinh g5 - sin go, (A5)
' 1
[PB,Hs] = —2(Pr —Pgq). Sy = —i(COShgz -sin ga + cos g3 - sinh ga), (A6)
Commutators for thé; can be obtained as the complex cons, — l(cosh g2 - sin ga — cos ga - sinh gs). (A7)
jugated of the corresponding ones for the Finally, for the 2 .
dilatation operatoD (expressed in matrix representation by th&he result forkz; is
identity matrix), we have: Ry = (¢10S0 — 1151 + 2¢1252 — 2¢1353)P1 +
[P;,D] = P, (A2) (c1051 + 1150 — 2¢1255 + 2¢1352)Pg
o +(c1052 + €1153 + c1280 + ¢1351)Pa +
withi=1,Q, 4, B. ) (c1083 — c1152 + ¢1251 + ¢1350)PB
Once we have all the rules of the game we can beginto play p P p P A8
with expression (A1) and calculate its first term: = C0FrtenPo+enPat nls. (A8)
Ny Ny Next term is
— e_g?) 3Pe‘]3 3
Rl R3 — e—91H1R2e91H1
(in what follows and for the sake of clarity we leave out th@nd, by means of the following partial results:
dependences on of g; andj; to recuperate them in the final —oiHip enH p in ol P
expressions). To this end we will need to calculate and ac‘ﬁ_j y 1 } = C0sgiFr — 1.51?091 Q
afterwards all the terms of the form e 91Poe"™ = cosg1Pg —ising1 Py
o 9y e 91t PAe91H1 — g P
e 9o pe?sts, e 91t PBengl — e i1 Pg
Each one of which is to be calculated using an equivalent of thee gets
Baker—Hausdorff formula, which, for example By, affirms ) . .
that R3 = (cg0cos g — icay singy )Py +
+((321 COs g1 — %Cap Sin gl)PQ =+
e 9sMsprents — Py gs [Py, Hy) 49089 P 4 + o367 1P =
+%g§ [Pr,Hs], Hsl + ... = c30Pr +¢31Pg + c32P 4 + c33P . (A9)
’ . _ Now the processis to be repeatedifpto obtainR,, Rs andRg.
The result of these calculations is Being thel ; the complex conjugated éf;, every expression is

e P eitls — Pr— gsPy,

e*93H3pAegsH3 = Py, R,
e‘g3H3PBe93H3 = P+ 2g3(P1 — PQ)

So one obtains = c4oP1 4+ ca1 PQ + c42P 4 + c43Pp,
R (Jr +2g3jB)P (j 2¢g3jB)P and
= (i + + (g — +
! ]I. gg]? ! .jQ gg.]B @ Rs = = (ca0To — ca1Th + 2c42T5 — 2¢43T5)Pr +
(—Jj193 — jogs +ja)Pa+ jPp =
+(caoT1 + ca1To — 2¢42T5 + 2¢43T5)Pg +
= c10Pr 4+ c11Pg + c12Pa + c13PB. (A3)
+(ca0Ts + ca1Ts + ca2Tp + casTh)Pa +
The meaning of the coefficients; is self-evident. Next termis +(ca0T3 — a1 Ty + ca2Th + c43To)Pp
Ry — e 92H2 g gu2Hz = ¢50Pr + ¢51Pg + ¢52Pa + ¢53P B,
where

Partial results involved are
To = coshgs - cosgs,

e 2P etz = §iP; + S1Pg + SHP 4 + S3Pp Ty = sinhgs - sings,
e‘ngzPQe"ZHZ = S5oPg — S1Pr — S2P4 + S3Pp T, =
g 92t PA892H2 = SoP4 + S1Pg + 25:P; — QSgpQ

1 . .
e 2H2pperetlz =GPy + 5Py + 25,Pg — 255Py, T = (coshgs - sings — cos gs - sinh gs).

1
= —§(cosh gs - sin g5 + cos g5 - sinh g5),

immediate just by using the corresponding complex conjugated
coefficients and by substituting the functiofis g5 andgg for
e Hspoessts = Pg — g3Py, g1, g2 andgs respectively. We successively obtain
= (c30 +296¢33)P1 + (c31 — 2g6¢33)Pg +
+(—c3096 — €3196 + ¢32)P A + c33Pp

(A10)

(A11)

(A12)
(A13)

(A14)

(A15)



A. Lopez Ariste & M. Semel: Analytical solution of the radiative transfer equation for polarized light 1099

The final result is Cloude S.R., 1986, Optik 75, 26
Givens C.R., Kostinski A.B., 1993, J. Mod. Opt. 40, 471
Rs = (c50 €08 ga + ics18ing4)Pr + Gourdin M., 1982, Basics of Lie groups. Ed. Frémés
+(c51 €o8 g4 + icso sin g4)Pgo + Cs0€ 9P, 4+ Greiner W., 1990, Relativistic Quantum Mechanics: Wave Equations.

i9ip . — Springer Verlag, Heidelberg
TC53€7 P = Jefferies J., Lites B.W., Skumanich A., 1989, ApJ 343, 920
= ce0Pr+ c61Pg + c62Pa + c63PB- (A16) JonesR., 1941, J. Opt. Soc. Am. A 31, 488
. . . . Jones H.F.,, 1996, Groups, representations and physics. Institute of

And we are only left with the dilatation operator, for which Physics Pub.
the operations are at this point almost immediate and give: | andau L., Lifshitz E., 1971, Relativistic Quantum Theory. Vol. 4 of

_ Course of Theoretical Physics, Pergamon Press
(O7'PO) = € (cooPr + co1Pq + c52Pa + cs3Pp) . (AL7) Landi Degl'Innocenti E., Landi Degl’'lnnocenti M., 1985, Sol. Phys.
97, 239
ndi Degl’'Innocenti E., 1976, A&AS 25, 379
Landi Degl'lnnocenti E., 1992, In:&chez F., Collados M.,&zquez

The D, coefficients at Sect. 5, can straightforwardly be obtain?%
from this expression as

Do(1) = e‘”(T)CGO(T) M. (eds.) Solar Observations: Techniques and Interpretation. Cam-
(1) bridge University Press
Di(r) = € eei(7) Landi Degl'lnnocenti E., Landi Degl'Innocenti M., 1981, Nuovo Ci-
1 mento B 62(1), 1
— ()2 , ,
Dy(r) = € 2 (c62(7) + co3(7)) Lopez Ariste A., Semel M., 1999, Numerical Solution of the Stokes

2(7) 1. transfer equation: DIAGONAL. Accepted for publication in A&A
Ds(r) = &7 Ji(eas(T) = co2(7))- (A18)  Magnus W., 1954, Comm. Pure. App. Math. VI, 649
Rachkowsky D., 1967, Izv. Krym. Astrofiz. Obs. 37, 56
Rees D., Murphy,G.A., Durrant C.J., 1989, ApJ 339, 1093
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