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Abstract. A new formalism is introduced for the transfer of
polarized radiation. Stokes parameters are shown to be four–
vectors in a Minkowski-like space and, most strikingly, the ra-
diative transfer equation (RTE) turns out to be an infinitesimal
transformation under the Poincaré (plus dilatations) group. A
solution to the transfer equation as a finite element of this group
is proposed.
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1. Introduction

Since the pioneering paper of Unno (1956) in which for the
first time a transfer equation was derived for polarized light in
the presence of a magnetic field, a number of attempts have
been made to obtain a solution for it. Rachkowksy (1967), af-
ter completing the equation by adding anomalous dispersion
effects, gave the first analytical solution for the case of Milne-
Eddington atmospheres. While numerical solutions were more
and more successful (Wittmann, 1974; Landi Degl’Innocenti,
1976; Rees et al., 1989; Bellot Rubio et al., 1998; López Ariste
& Semel, 1999) analytical trials struggled to overcome the
problem of non-commuting absorption matrices. This prob-
lem, already noted in a paper of Landi Degl’Innocenti & Landi
Degl’Innocenti (1985), is pointed out clearly in the work of
Semel & Ĺopez Ariste (1999) (hereafter referred as Paper I)
as the origin of all previous limitations. In this paper, deep in-
sights are given on how to benefit from the physical significance
of the various terms in the transfer equation to attain an analyti-
cal solution as general as possible. Several transformations used
here to simplify the RTE seem to indicate that the physics of
the Stokes parameters is best described in geometrical terms.
Indeed, we shall show in this paper that the Poincaré (plus di-
latations) group is at the origin of these geometrical aspects,
and we shall use its algebraic properties to solve the problem
even for non–commuting absorption matrices and give a general
solution for this equation of transfer.

The fundamental problem addressed in the present pa-
per is the existence of an analytical solution to the RTE. At
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present, analytical solutions exist for only very limited cases
and the known formal solutions (Landi Degl’Innocenti & Landi
Degl’Innocenti, 1985) do not offer, in the general case, any ad-
vantage from the computational point of view. Apart from the
interest of a computable analytical solution by itself, it would be
of greater importance for testing numerical codes which nowa-
days are considered acceptable only by observing theircon-
vergenceupon increasing number of layers. This is not a very
satisfactory situation. We think that the solution presented in
this paper is the first step towards a general solution suitable for
testing computations.

Why an analytical solution could not be found so far is our
first question. It is our belief that group theory is the key to the
solution and that explains why it had not been reached up to
now (this could already be understood from the conclusions in
Paper I which stressed the importance of the non-commutativity
of matrices in this problem, but it is still clearer here). Group
theory is not common in astronomical literature. However the
RTE of polarized light has become a more and more important
problem in astrophysics, related, for instance, to the measure-
ment of magnetic fields via the Zeeman or Hanle effects. Hence
group theory should be accessible to the concerned astrophysi-
cal community, and with its help we can give a method to find
the solution, and explicitly give the full expression of the ana-
lytical solution for the most general case. Any other particular
or general solution will benefit from the use of advanced linear
algebra, and so avoid wasted effort. Last but not least, it may
deepen our understanding of Stokes polarimetry.

We begin our research by disclosing the mathematical na-
ture of the Stokes vector, starting with its physical definition and
extending to the appropriate mathematics to treat our problem.
Extensive literature has already been devoted to the existing
relations between polarization and the Lorentz group, mainly
from the optical point of view (see for instance Cloude 1986;
Givens & Kostinski 1993; Sridhar & Simon 1994 and references
therein). Usually these works take off from the Jones formal-
ism for polarized light (Jones, 1941) and develop these relations.
Here a similar path is followed to show that the Stokes vector is a
4–vector in a Minkowski-like space. The demonstration is based
on the comparison between the usual definition for the Stokes
parameters (see for example Shurcliff, 1962, or Jefferies, Lites
& Skumanich, 1989) and the well–known relations between the
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definition of a spinor and its different representations (see for
instance Landau & Lifshitz, 1971). In the same line of thought,
we will propose in Sect. 3 that the RTE is just a representation of
an infinitesimal Poincaré (plus dilatations) transformation in the
Minkowski-like space where the 4–vectors are best described.
This new interpretation of the equation of transfer suggests that
any solution to this equation must be a finite Poincaré transfor-
mation. We calculate it in Sects. 4 and 5. We note that nothing
differentiates the transfer equation as written elsewhere in the
literature from a Poincaré transformation, although at present a
demonstration is not available, apart from this similarity. We an-
ticipate that a finite Poincaré transformation may be a solution
for the RTE.

The concepts of 4–vector, Minkowsky space or Lorentz and
Poincaŕe transformations must be understood throughout this
paper in their purest mathematical sense, beyond their historical
meaning. These concepts originated in the framework of the
special theory of relativity, however mathematics did abstraction
of these tools and incorporated them into more general frames
of geometry and group theory. Therefore we define 4–vectors
as sets of 4 numbers characterized by their Minkowsky norm
and described in a hyperbolic 4–dimensional space called the
Minkowsky space, which, in this paper, we will refer to as the
Minkowsky–like space, in order to stress the difference with the
usual Minkowsky space used in relativity. Lorentz and Poincaré
transformations describe movements in this space: generalized
translations and rotations. In the relativistic formalism these
movements are interpreted as a change of reference system.
In this paper they are not given that meaning, but are seen as
changes in the polarization state. The manipulation of these
concepts is identical here and in the relativistic formalism, if
one takes care in substituting the four Stokes parameters for
space and time, and for the speed its analogues as shown in
Sect. 3.

2. Stokes parameters as a 4–vector

The 4 Stokes parameters are usually represented byI, Q, U, V,
whereI stands for the total intensity of light,Q andU for the lin-
ear polarized light in two axes rotated by45◦ one from the other,
andV for the circularly polarized light. These four quantities
are not completely free but must satisfy an energy condition:
there cannot be more polarized light than total light. This con-
dition suggests an interpretation of the Stokes parameters as a
4–vector in a Minkowski-like space. The norm of a vector in
such a space is defined as

‖I‖2 = I2 − Q2 − U2 − V 2. (1)

Hence the above condition is naturally satisfied by vectors with
a positive norm, in parallelism totime-likevectors in special rel-
ativity. Continuing this parallelism, alight-conecan be defined
as the surface which obeys the condition

‖I‖ = 0, (2)

that is

I2 = Q2 + U2 + V 2. (3)
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Fig. 1.3-dimensional projection of the light cone for the Stokes vector

In our context, this surface contains all the different possibilities
for fully polarized light. The Stokes vector must be inside or,
in the limit, on thislight-cone(see Fig. 1) to obey condition
(1). An exception to this parallelism with special relativity: the
backward light conedoes not have an equivalent with the Stokes
vectors.

To consolidate and extend this interpretation of the Stokes
parameters we begin with the definition of the Stokes parameters
in terms of the electric field.

A transversal monochromatic light wave is completely de-
scribed byEx andEy, the components of the electrical field in a
plane perpendicular to the direction of the propagation of light,
z. Following definitions in Landau & Lifshitz (1971), these two
components can be arranged in a 2–dimensional vector. Since it
transforms linearly under the proper Lorentz group (ibid.) this
vector can be called aspinor of rank one. As an illustration of
this kind of transformation, we profit from the fact that any el-
ement of this group in its 2–dimensional representation can be
written as a linear combination of the Pauli matrices (plus the
2 × 2 identity matrix):

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
(4)

σ2 =
(

0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
, (5)

and transform the electric field vector by these matrices:

σ0

(
Ex

Ey

)
=
(

Ex

Ey

)
, σ1

(
Ex

Ey

)
=
(

Ex

−Ey

)

σ2

(
Ex

Ey

)
=
(

Ey

Ex

)
, σ3

(
Ex

Ey

)
=
(−iEy

iEx

)
. (6)

The result is always a new 2-dimensional electric field vector
which describes a different state of polarization.

A spinor of rank two can be easily constructed by multi-
plying conveniently two spinors of rank one. For our particular
spinor we obtain

J′ =
(

ExE∗
x ExE∗

y

EyE∗
x EyE∗

y

)
,
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where the∗ symbol stands for complex conjugated. This 2nd
rank spinor is to be compared with thecoherency matrix(see
Born & Wolf 1980). In fact the last is defined for any given light
beam, and a mean over frequencies or time is necessary in the
above expression ofJ′ to fulfill the definition. The average ofJ′

is a linear combination of matrices of the form referred. Since
spinors of rank two form a linear vector space, any linear com-
bination of spinors will be a spinor as well. Hence the coherency
matrix, defined usually as

J =
( 〈ExE∗

x〉 〈
ExE∗

y

〉
〈EyE∗

x〉 〈
EyE∗

y

〉) ,

is still a spinor of rank two.
Since a spinor built in this way has 4 independent compo-

nents (the four entries of the matrix), there must exist a rela-
tion between it and a 4-vector, which also has 4 independent
components. Technically speaking, both must be differentreal-
izations of the same irreducible representation of the Lorentz
group (Landau & Lifshitz 1971, page 55). The components
(I, Q, U, V ) of this 4–vector are indeed related to the compo-
nents ofJ as

I =
1
2
(J11 + J22),

Q =
1
2
(J11 − J22),

U =
1
2
(J12 + J21),

V =
1
2
i(J12 − J21). (7)

These components are identical to the definition of the Stokes
parameters as given by Jefferieset al. (1989), or Born & Wolf
(1980) for instance. The conclusion is evident: the resulting 4–
vector, derived from the coherency matrix, a spinor of rank 2, is
the Stokes vector. This formalism can be given in an alternative
way: an usual basis for spinors is the set of Pauli matrices plus
the 2 × 2 identity matrix. The coherency matrix expressed in
this basis has for coefficients the Stokes parameters

J = Iσ0 + Qσ1 + Uσ2 + V σ3 (8)

Using this relation we can write in a more compact form rela-
tions (7) as:

I =
1
2
Tr [Jσ] , (9)

where the vectorσ has four components, the2×2 identity matrix
and the 3 Pauli matrices, andTr denotes the trace operation on
matrices.

These relations stress further the interpretation of the Stokes
parameters as a 4–vector in a Minkowski-like space. We stress
that when talking about a Minkowski–like space we mean that
the coordinates in our 4–dimensional space are no longer space
and time, but the Stokes parameters, contrary to the usual
Minkowski space used in relativistic formalism. On the other
hand the underlyinghyperbolicgeometry is exactly the same in
both cases, mathematically speaking they are the same space.

All the usual properties of the Stokes parameters are recovered
in this space. For instance the sum of two 4–vectors is a new
4–vector, a well-known property of the Stokes parameters. Con-
trary to the usual Minkowsky space, the absence of thebackward
light coneimplies not only that negative intensities are mean-
ingless, but also that the negative of a Stokes vector does not
exist. Hence subtraction of Stokes vectors is naturally forbidden
in this space.

3. Radiation transfer equation as a Poincaŕe
(plus dilatations) infinitesimal transformation

Since the Stokes vector is a 4–vector in a Minkowski-like space,
one may wonder what would be the meaning of a Lorentz trans-
formation over the Stokes parameters.

Homogeneous Lorentz transformations form a 6–parameter
Lie group: 6 generators suffice to describe all possible infinites-
imal transformations. These generators are (see for example
Greiner 1990, or any textbook in special relativity or group the-
ory)1:

– The three4× 4 matrices for 3-dimensional spatial rotations

SQ =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 ,SU =




0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


 ,

SV =




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0




– The three4×4 matrices for hyperbolic rotations (or Lorentz
boosts in relativistic terms)

KQ =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,KU =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,

KV =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




An infinitesimal Lorentz transformation over the Stokes 4–
vectorI can be expressed as a sum of generators multiplied
by their respective infinitesimal parameters:

I ′ = I +
∑

i=Q,U,V

βiSiI +
∑

i=Q,U,V

γiKiI. (10)

For convenience, we can re-write all these parameters(βi, γi) in
terms of a common parameterdτ , expressed in differential form
(we are dealing with an infinitesimal transformation)

β = (βQ, βU , βV ) = −(ρQ, ρU , ρV ) · dτ, (11)

γ = (γQ, γU , γV ) = −(ηQ, ηU , ηV ) · dτ. (12)

1 Everywhere in this paper we useg = diag(1, −1, −1, −1) as the
metric for the Minkowski space
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And the infinitesimal transformation reads now:

I ′ = I −

 ∑

i=Q,U,V

ρiSi +
∑

i=Q,U,V

ηiKi


 Idτ. (13)

Given the infinitesimal character of the transformation, ex-
pressed explicitly by putting the common parameterdτ , it easily
leads to a differential equation forI in the variableτ :

d

dτ
I = −K′I, (14)

whereK′ is a4 × 4 matrix given by

K′ =
∑

i=Q,U,V

ρiSi +
∑

i=Q,U,V

ηiKi =

=




0 ηQ ηU ηV

ηQ 0 ρV −ρU

ηU −ρV 0 ρQ

ηV ρU −ρQ 0


 .

Matrix K′ looks like the well-known absorption matrix
(Landi Degl’Innocenti, 1992). At this point the possibility that
the RTE could be written as an infinitesimal transformation in-
volving the Lorentz group seems to be at hand. ButK′ still
differs from the general form of the absorption matrix. In par-
ticular the inclusion of a diagonal term is necessary if we want to
take into account the scalar absorption represented byηI in the
usual matrix. To include it we just add to the usual 6 generators
of the Lorentz group the one for the dilatation transformation2.
While dealing with the homogeneous group, we can represent
the generator of dilatations by the4×4 identity matrix. We will
repeat all the previous steps calling the new parameter for this
transformationηI :

I ′ = I −

ηI1l +

∑
i=Q,U,V

ρiSi +
∑

i=Q,U,V

ηiKi


 Idτ,

to finally obtain:

d

dτ
I = −KI, (15)

whereK is given by

K = ηI1l +
∑

i=Q,U,V

ρiSi +
∑

i=Q,U,V

ηiKi =

=




ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηI


 .

2 The dilatation transformation does not belong to the usual Lorentz
group. A usual definition of the transformations belonging to this group
is that they do not change the Lorentz norm of any 4–vector. By defi-
nition, a dilatation transformation does change this norm. Fortunately
the new set of 7 generators is still a group.

Matrix K can now be compared to the so-called absorption ma-
trix which appears in RTE (Landi Degl’Innocenti, 1992; Jef-
feries et al., 1989). CoefficientηI gives the scalar absorption,
independent of polarization. This absorption has its equivalent
in a contraction (that is a negative dilatation) of the Stokes 4–
vector. The 3–vectorη is responsible for the creation and absorp-
tion of polarization, which is understood here to be a hyperbolic
rotation (or Lorentz boost) of the Stokes 4-vector. Finally the 3–
vectorρ gives the so-called Faraday rotation in Zeeman effect
and, as its name seems to indicate, it rotates the Stokes 4–vector
inside the 3-dimensional space of polarized states (also called
Poincaŕe sphere). Note that from the previous paragraph it can-
not be stated that any infinitesimal Lorentz (plus dilatations)
transformation is a transfer equation. We state that the absorp-
tion matrix as it is usually written elsewhere in the literature,
cannot be differentiated from an infinitesimal Lorentz transfor-
mation (indeed we have decomposed the absorption matrix in
the RTE in terms of the infinitesimal generators of the Lorentz
transformations). In fact, it is well known that the actual ab-
sorption matrix for Zeeman effect must still obey some further
constraints. In this sense a general Lorentz (plus dilatations)
transformation is too general: absorption matrices standing for
a real physical process would constitute only a subset of all
possible Lorentz (plus dilatations) transformations. While it is
evident that a further study of this relation is necessary, in this
paper we will only make use of themathematical advantage
and postpone the rest for a forthcoming paper.

Eq. (15) is not yet the complete transfer equation. An in-
homogeneous term, the emission vector, is still needed. For
this purpose there are appropriate movements in the Minkowski
space: the homogeneous Lorentz group can be extended to the
inhomogeneous Poincaré group. This 10-parameters Lie group
shares 6 infinitesimal generators with the Lorentz group and
adds 4 more generators (PI ,PQ,PU andPV ) to take into ac-
count translations along I, Q, U and V (what in relativistic for-
malism would be translations in time and space). These gener-
ators operate on a generic Stokes vector as follows:

PII =




1
0
0
0


 ,PQI =




0
1
0
0


 ,

PUI =




0
0
1
0


 ,PV I =




0
0
0
1


 . (16)

After including dilatations, the infinitesimal inhomoge-
neous transformation is given by

I ′ = I − KIdτ + dτ
∑

i=I,Q,U,V

jiPiI = I − KIdτ + Jdτ (17)

whereJ is the emission vector. Some algebraic manipulations
equivalent to those used for the homogeneous group will lead
to the complete radiative transfer equation.

It is interesting to note the fact that these generators allow
one to write an inhomogeneous term (the source function) in a
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pseudo-homogeneous way:

I ′ = I +


−K +

∑
i=I,Q,U,V

jiPi


 Idτ.

A useful representation to understand this apparent paradox is
the one using differential operators. Let us callII = I, IQ = Q
and so on, and write

Pi =
∂

∂Ii

wherei = I, Q, U, V . It is evident that with such an operator,
relations (16) hold. All the other generators can be rewritten in
this representation. For instance, the dilatation generator can be
written

D =
∑

i=I,Q,U,V

Ii
∂

∂Ii

and the generator of rotations in the planeUV , for instance, is

SQ = −IU
∂

∂IV
+ IV

∂

∂IU
,

The interested reader will find good discussions on the represen-
tations of the Poincaré group and the dilatation transformation
in Greiner (1990), Gourdin (1982) or Jones (1996) for example.

4. Finite transformations as a solution

In view of the results obtained in the last section, the solution to
the RTE appears to be quite straightforwardly a finite Poincaré
(plus dilatations) transformation. The important fact now is that
we already know how to write such a finite transformation: if
we denote the 11 generators byti, a finite element of this group
can always be written as

exp

(∑
i

ξiti

)
,

whereξi are the parameters of the transformation for each move-
ment, the equivalent of angles for usual rotations. The next prob-
lem is how to calculate those finite parametersξi from their in-
finitesimal counterparts (ηI , ηQ and so on). Unfortunately this is
not an easy task. The problem resides in the non–commutativity
of the generators. The next paragraph proposes a solution to this
problem, but first we consider it useful to clarify why other ap-
proaches will not work. Magnus (1954) (a brief introduction to
this paper can be found in the Appendix of the paper by Semel &
López Ariste, 1999) has already written a finite transformation
in terms of such a unique exponential. A quick inspection of
the expression given there illustrates why we consider that this
calculation is not an easy task. Nevertheless some simple cases
can be proposed in which the relation between theξi and the
respective infinitesimal parameters is plain. For instance in the
case of 3–dimensional rotations it is always possible to trans-
form (by means of the Euler angles) our initial reference system
into another one for which the rotation axis is parallel to one of

the new reference axes. In the case of a fixed axis, just one gener-
ator suffices to describe the movement. If we call this generator
t, and the infinitesimal parameterdξ, the finite transformation
results in

exp (ξt) = exp
(

t
∫

C

dξ

)
.

Apparently, our problem is solved if we deal with a unique
generator per exponential. Hence, we can propose for instance
a solution in the form of a product of several exponentials, one
for each generator:∏
i=1,11

exp (ξiti) .

Now the derivative of each exponential in the product can be
easily calculated in a very compact form, and so the product of
all of them, and consequently the new finite parametersξi (as
in the above example). But a new question arises: which order
should be chosen for the exponentials? Again due to the non-
commutativity of the infinitesimal generators, different orders
produce different results,

eξitieξjtj /= eξjtj eξiti , (18)

and in general no particular order will be the solution. An answer
to this kind of problem has been given by Wei & Norman (1963).
In what follows, we sketch the solution there proposed and apply
it to our particular problem. We start with the homogeneous
equation (just the Lorentz group plus dilatations) and in the
next section we will incorporate the inhomogeneous part and
handle the full Poincaré group.

The ordering problem can be recast as follows: we may say
that by introducing an order in the exponentials we introduce
an error. In spite of this error, let us choose a particular order
for the exponentials and then substitute theξi (which could be
calculated straightforwardly as the integrals over the path of the
corresponding infinitesimal parameters) for some unspecified
scalar functionsgi:∏
i=1,7

exp (giti) . (19)

The new functionsgi have to, in a certain sense, take into ac-
count the effect of theξi and correct the error introduced by
the chosen order. Existence for thosegi functions can only be
ensured after introducing the proposed solution into the RTE.
The following consistency equation for thegi’s is obtained as a
necessary condition for Eq. (19) to be a solution:

−K(τ) =
∑

i=1,7

ġi(τ)


i−1∏

j=1

exp(gjtj)




×ti


 1∏

j=i−1

exp(−gjtj)


 , (20)

where the dot denotes derivative over the integration variableτ .
This equation was the aim of this section so far. A less heuristic
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but more direct way of introducing it is to look for a solution
of the form (19) and introduce it into the transfer equation. It is
straightforward to fall upon Eq. (20) as the condition for (19) to
be a solution.

In what follows in this and the next sections we shall solve
Eq. (20) for thegi’s. The details being quite technical, the reader
may wish to skip this and go directly to Eq. (28).

Eq. (20) is quite an involved equation. It requires calculation
of a non negligible number of expressions of the form

exp(gjtj)ti exp(−gjtj).

This is to be done by means of the Baker-Hausdorff formula,
which states that

eXY e−X = Y + [X, Y ] +
1
2!

[X, [X, Y ]]

+
1
3!

[X, [X, [X, Y ]]] + . . .

In the form they have been written in the last section, the
generators of the Lorentz group obey the following Lie algebra
(with εijk the totally antisymmetric index):

[Ki,Kj ] = −εijkSk

[Si,Sj ] = εijkSk

[Si,Kj ] = εijkKk

[Si, 1l] = 0
[Ki, 1l] = 0,

which does not facilitate calculations at all. A suitable combi-
nation of generators will yield a new base of generators with a
gentler (from our point of view) Lie algebra. For instance, the
following set,

H1 = SQ + iKQ,

H2 = (KU − SV ) − i(KV + SU ),
H3 = (KU + SV ) + i(KV − SU ),
Li = H∗

i fori = 1, 2, 3,

to which we add the identity,1l, for completion, obeys the fol-
lowing commutation rules

[H1,H2] = 2iH2,

[H1,H3] = −2iH3,

[H2,H3] = −4iH1,

[L1, L2] = −2iL2,

[L1, L3] = 2iL3,

[L2, L3] = 4iL1,

[Hi, Lj ] = 0,∀i, j.

The initial algebra of 6 generators has been decomposed into
two sub-algebras of 3 generators each, with the particularity that
each generator of one sub-algebra commutes with every gener-
ator of the other one. The dilatations generator, which must be
added to them, commutes with every other generator (remember
that, while constrained to the homogeneous group, the dilata-
tion generator can be represented by the identity matrix) and

therefore there is no ordering problem associated with it. The
initial problem of ordering 7 exponentials is reduced to ordering
a subset of 3 exponentials; the order of each one of theH’s with
respect to theL’s generators or the identity being immaterial.

We can rewrite solution (19) using the new set of infinitesi-
mal generators in explicit form as

I(τ) = eg3(τ)H3eg2(τ)H2eg1(τ)H1eg6(τ)L3eg5(τ)L2

×eg4(τ)L1eg7(τ)1lI(τ0), (21)

where a very special order has already been chosen. Different
orders, while yielding equivalent solutions, can make calcula-
tions affordable or desperate. With this problem in mind we
have chosen a particular order.

We now expressK in the new basis:

K =
∑

i

aiHi +
∑

i

biLi + ηI1l

where

a1 = −1
2
(ρQ + iηQ)

a2 =
1
4
[(ηU + ρV ) + i(ηV − ρU )]

a3 =
1
4
[(ηU − ρV ) − i(ηV + ρU )]

bi = a∗
i ,∀i = 1, 2, 3.

Calculation of the Baker–Hausdorff series for the new genera-
tors simplifies a lot, and Eq. (20) reads now:

−
∑

i

aiHi −
∑

i

biLi − ηI1l (22)

= ġ71l + ġ3H3 + ġ2
[
H2 + 4ig3H1 − 4g2

3H3
]

+ġ1
[−2ig2H2 + (1 + 8g2g3)H1 +

(
2ig3 + 8ig2

3g2
)
H3
]

+ġ6L3 + ġ5
[
L2 − 4ig6L1 − 4g2

6L3
]

+ġ4
[
2ig5L2 + (1 + 8g5g6) L1 − (2ig6 + 8ig2

6g5
)
L3
]
.

Comparing coefficients on both sides, and after proper rear-
rangement the following set of differential equations is obtained:

ġ1 = −a1 + 4ig3a2

ġ2 = −2ig2a1 − (1 + 8g2g3)a2

ġ3 = 2ig3a1 + 4g2
3a2 − a3

ġ4 = −b1 − 4ig6b2

ġ5 = 2ig5b1 − (1 + 8g5g6)b2

ġ6 = −2ig6b1 + 4g2
6b2 − b3

ġ7 = −ηI

All of them share the same boundary condition, namelygi(τ0) =
0, to satisfy the boundary condition of the RTE.

The functiong7 can be integrated at once to give

g7(τ) = −
∫ τ

τ0

ηI(τ ′)dτ ′.

As expected, because of the particularities of the Lie algebra,
the set of equations forg1,2,3 is separated from the one forg4,5,6,



A. López Ariste & M. Semel: Analytical solution of the radiative transfer equation for polarized light 1095

and each set is the complex conjugated of the other, so that the
solution tog4,5,6 is straightforward once the one forg1,2,3 is
given. Furthermore each set can be solved by quadrature, as
equations forg1 andg2 depend only ong3, whose equation is
disentangled from the others:

ġ3 = αg2
3 + βg3 + γ, (23)

where we have definedα = 4a2, β = 2ia1 andγ = −a3. This
is a Riccati equation, and for its solution the explicit depen-
dences ofa1,2,3 on the integration variableτ are required. For
a constantK matrix the solution is straightforward, and from it
those ofg2 andg1. More complex dependences must be care-
fully managed (see for example Cariñena & Ramos (1998) and
references therein for the integrability conditions of the Riccati
equation).

Before passing to the next section, where we will generalize
the method to the full Poincaré group, we go back to Eq. (21).
Once we have integrated the Riccati equation and obtained all
thegi’s, we still need to calculate the exponentials. To this end
we profit from a remarkable property of matricesHi andLi:

H2
1 = L2

1 = −1l
H2

2 = H2
3 = L2

2 = L2
3 = 0,

by means of which:

eg1H1 = cos g11l + sin g1H1

eg2H2 = 1l + g2H2

eg3H3 = 1l + g3H3

eg4L1 = cos g41l + sin g4L1

eg5L2 = 1l + g5L2

eg6L3 = 1l + g6L3.

The final complete solution for the homogeneous part results in

I(τ) = [1l + g3(τ)H3] · [1l + g2(τ)H2]
[cos g1(τ)1l + sin g1(τ)H1]
· [1l + g6(τ)L3] · [1l + g5(τ)L2] ·
[cos g4(τ)1l + sin g4(τ)L1] · exp[g7(τ)1l]I(τ0). (24)

The validity of this solution is almost evident: Its derivative re-
sults in the RTE just by making use of the differential equations
satisfied by the functionsgi.

This is a solution to the homogeneous equation

d

dτ
IL = −KIL.

Let us write this solution as

IL(τ) = O(τ, τ0)IL(τ0),

where the explicit form ofO(τ, τ0) can be found by comparing
this expression with the complete one in Eq. (24). This operator
O(τ, τ0) is often referred to as theevolution operator(see mainly
Landi Degl’Innocenti & Landi Degl’Innocenti 1985, who first

introduced it). This operator trivially obeys the homogeneous
equation

d

dτ
O(τ, τ0) = −KO(τ, τ0), (25)

with initial condition

O(τ0, τ0) = 1l.

Eq. (24) provides on its own a general analytical solution for the
evolution operator.

This solution is a fully general expression for finite Lorentz
transformations plus dilatations. But radiative transfer cases do
not cover the full spectrum of Lorentz transformations. In this
sense the obtained solution is too general, in agreement with
Sect. 3. As an illustration, consider the case when theρ’s and
η’s are zero except forηQ. The functiong1 becomes

g1 = − i

2

∫
ηQdτ,

and a term of the form

cos g1 = cosh
1
2

∫
ηQdτ

appears in the final solution. The hyperbolic cosine grows
monotonously with its argument, therefore the intensity of the
out-coming light would grow also monotonously for a semi-
infinite atmosphere. This is a completely nonsensical result. To
recover physical sense one must impose some constraint on the
allowed transformations. This constraint evidently imposes a
relation betweenηQ andηI , whose explicit form is outside the
scope of this paper, but which should be derived from the as-
sumed physical processes. This example can be extrapolated to
all the η’s andρ’s. The relations thus obtained will constrain
the Lorentz transformations to a subset of matrices for which,
nevertheless, the above solution (24) will remain valid.

5. Solution for the complete inhomogeneous equation

To solve the inhomogeneous equation, one would need to repeat
the calculations shown in the previous section, but this time for
the whole Poincaré group. To recalculate everything with 4 more
generators involves a lot of work. The paper by Wei & Norman
(1963) provides us with a way to avoid some of this work. The
Poincaŕe group can be decomposed into the direct sum of a
semi-simple algebraL and a radicalR (whose definitions can be
found in that same paper for instance). In terms of the previously
used generators of the Poincaré group, the semi-simple algebra
is given by

L = {H1,H2,H3, L1, L2, L3},

the generators of the homogeneous part. The radical is given by

R = {1l,PI ,PQ,PU ,PV },

the inhomogeneous part plus the identity. We will include the
dilatation transformation in the semi-simple algebra set for eas-
iness. If we write the transfer equation as

d

dτ
I = HI,
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then,H, an element of the Poincaré group plus dilatations, can
be decomposed into

H = −K + P,

whereK is the usual absorption matrix, an element of the ho-
mogeneous group, andP, which stands for the set of four trans-
lations introduced in Sect. 3, is an element of both the radical
and the inhomogeneous part of the equation. In the last section
we dealt with the homogeneous equation and found a solution
for the evolution operatorO(τ, τ0) by using the Lorentz group
plus dilatations. Now, it is easy to demonstrate that if we are
able to solve the equation

d

dt
IR =

(
O−1(t, τ0)P(t)O(t, τ0)

)
IR,

a solution for the complete transfer equation can be written in
the form

I(τ) = O(τ, τ0)IR(τ). (26)

In fact, this result is exactly equivalent to the formal solution
given by Landi Degl’Innocenti & Landi Degl’Innocenti(1985).
To prove it, we note thatO(t, τ0)IR will give, by properties of
the evolution operator, a newIR(t). The effect ofP is however
independent of the actual value ofIR(t), we will always obtain
that

PIR(t) =




jI

jQ

jU

jV


 = J ,

where theji’s are the infinitesimal parameters of the translation
transformation: the emission vector in our particular case. The
previous equation results therefore in

d

dt
IR = O−1(t, τ0)J(t),

which can be integrated at once:

IR(τ) = IR(τ0) +
∫ τ

τ0

O−1(t, τ0)J(t)dt.

Combining it with the homogeneous solution, we obtain the
final complete solution:

I(τ) = O(τ, τ0)
(

IR(τ0) +
∫ τ

τ0

O−1(t, τ0)J(t)dt

)
.

And benefiting from the well known properties of the evolu-
tion operator, we can transform this expression into the formal
solution given in the above referred paper:

I(τ) = O(τ, τ0)IR(τ0) +
∫ τ

τ0

O(τ, t)J(t)dt.

Hence, once the evolution operator is solved as shown in
the previous section we can use this expression to obtain the
complete solution. Instead of doing that, we shall proceed with
the techniques provided by the group theory and obtain a com-
pletely equivalent but independent expression forIR.

P belongs to the radical which, by definition, is an ideal of
the Poincaŕe group, so that in fact the termO−1PO is just a
linear combination of the infinitesimal generators ofR:(
O−1PO

)
= ηI1l + D0PI + D1PQ + D2PU + D3PV .

Obtaining the coefficientsDi (with i = 0, 1, 2, 3) is quite long,
the detailed calculation is to be found in the Appendix. This cal-
culation constitutes by itself a demonstration of the first state-
ment of this paragraph for our particular case, a long one, but
which does not require further knowledge in group theory. The
next step is to solve the equation

d

dτ
IR = (D0PI + D1PQ + D2PU + D3PV ) IR.

This is in fact a very easy equation, as everyPi commutes with
each other. The solution can be given at once as

IR(τ) = ePI

∫ τ
τ0

D0(t)dt · ePQ

∫ τ
τ0

D1(t)dt·

ePU

∫ τ
τ0

D2(t)dt · ePV

∫ τ
τ0

D3(t)dt
IR(τ0).

Calculation of the exponentials is straightforward: ThePi are
the infinitesimal generators of translations in the four axes
I, Q, U, V , hence by exponentiation we recuperate the finite
transformation:

IR(τ) = IR(τ0) +



∫ τ

τ0
D0(t)dt∫ τ

τ0
D1(t)dt∫ τ

τ0
D2(t)dt∫ τ

τ0
D3(t)dt




= IR(τ0) + D(τ, τ0). (27)

The last step is to put together the homogeneous and inho-
mogeneous solutions by using expression (26). We obtain

I(τ) = e− ∫ τ
τ0

ηI(t)dt [1l + g3(τ)H3] · [1l + g2(τ)H2]
· [cos g1(τ)1l + sin g1(τ)H1] · [1l + g6(τ)L3]
· [1l + g5(τ)L2] · [cos g4(τ)1l + sin g4(τ)L1]
· (I(τ0) + D(τ, τ0)) . (28)

Note that this solution is general for all the radiative transfer
problems known to date in polarization, provided the source
function is given. As discussed in the previous section, it is
even too general.

This solution is also independent of any model atmosphere.
This is necessary to ensure its generality, but presents the prob-
lem of the integrability: have the integrals for thegi’s and the
inhomogeneous vectorD an analytical expression for all and ev-
ery interesting case? The most likely answer is no. But whatever
the answer, physical intuition indicates that there must always
exist at least a numerical solution to them. However further work
must be developed on the subject.

It is also important to note that we are proposing not just
an expression as solution of the RTE, but a method: particular
cases may ask for different orderings of the generators or even a
different decomposition of the product of exponentials. We have



A. López Ariste & M. Semel: Analytical solution of the radiative transfer equation for polarized light 1097

seen that we can in any case give a solution in the form of seven
exponentials, but, for instance, when solving constant matrix
atmospheres it may be more interesting to consider only the
product of 3 exponentials, one with theHi generators a second
one for theLi’s, and a last for the dilatations, or even a sole
one, in which case the solution for the evolution operator can
be written at once:

O(τ, τ0) = exp−K(τ − τ0),

in accordance with Magnus’ solution (Magnus, 1954) or with
the scalar–like exponential solution (Semel & López Ariste,
1999). For any number of exponentials, the method will work,
the sole problem being to solve the subsequent scalar linear
equations and integrals. In all the cases, acompact and finite
expression for the solution is obtained and the problem is re-
duced to the ability to integrate scalar expressions.

6. Discussion and conclusion

In this paper we have introduced a new formalism to handle
Stokes parameters and radiative transfer equations for polar-
ized light. In this formalism, the Stokes parameters appear as
a 4–vector in a Minkowski–like 4–dimensional space, and its
evolution in time looks mathematically as typical rotations, con-
tractions and translations in this space. These movements are
completely described by the transformations of the group of
Poincaŕe plus dilatations, a10+1 dimension group, well-known
from other areas of physics and mathematics. The RTE is shown
to be an infinitesimal transformation of this group. We therefore
propose that a solution to the RTE can be given in the form of a
finite transformation of the Poincaré plus dilatations group. Ob-
taining of this solution from the variables present in the trans-
fer equation raises some technical difficulties which have been
overcome by the use of the Wei-Norman method (Wei & Nor-
man, 1963). The final obstacle is reduced to a scalar Riccati
equation.

The Riccati equation is a well studied first order differential
equation, characterized by its quadratic term. This non-linearity
can at worst prevent an explicit solution, and usually make it
difficult to calculate. In any case the problem of giving a so-
lution for the RTE will have been reduced from solving a 4–
dimensional vector equation to solving a scalar Riccati one.
Whenever this Riccati equation can be integrated, a complete
solution is obtained for the RTE.

Until now only numerical integration methods (see for in-
stance Rees et al., 1989, Bellot Rubio et al., 1998 or López Ariste
& Semel, 1999) were capable of integrating non-constantK ma-
trices. The only way to test the validity of the solution and the
convergence rates was to compare them with previous meth-
ods, known to converge asymptotically. The solution presented
in this paper may allow a comparison with an analytically ex-
act solution. We anticipate that new numerical methods will be
developed taking advantage of the analytical solution; perhaps
faster and more precise than previous ones.

In order to obtain this solution we made use of a mathe-
matical frame, group theory, rarely seen in the astrophysical

literature. The advantages gained in the integration of the polar-
ized RTE warranted the efforts. We anticipate that new results
in the study of polarized light transfer in astrophysical problems
will be achieved by the use of this and related techniques.

Acknowledgements.The authors are indebted to M. Landolfi and M.
Landi Degl’Innocenti for precious discussions and comments.

Appendix A: solution for the radical

As explained in Sect. 5, we need to calculate, in order to obtain
the final solution, a term of the form(
O−1PO

)
, (A1)

whereO is the evolution operator, solution of the homogeneous
equation, i.e.,

O(τ, τ0) = eg3(τ)H3eg2(τ)H2eg1(τ)H1eg6(τ)L3eg5(τ)L2

×eg4(τ)L1eg7(τ)1l,

and whereP is the inhomogeneous part of the transfer equation
which can be written as

P = jI(τ)PI + jQ(τ)PQ + jU (τ)PU + jV (τ)PV ,

where theji are the components of the emission vector. In a
further effort to simplify the calculations, instead of this linear
combination we will use

P = jIPI + jQPQ + jAPA + jBPB ,

wherePA = PU + iPV , and PB is its complex conjugate.
Consequently,jA andjB are given by

jA =
1
2
(jU − ijV )

jB =
1
2
(jU + ijV ).

Working out expression (A1) implies the use of commutators
of Hi, Li and the dilatations withPi. Those commutators, which
can be found in any textbook on group theory, are, forPI

[PI ,H1] = −iPQ

[PI ,H2] = −PB

[PI ,H3] = −PA.

ForPQ we have

[PQ,H1] = −iPI

[PQ,H2] = PA

[PQ,H3] = −PA.

ForPA

[PA,H1] = iPA

[PA,H2] = −2PI

[PA,H3] = 0.
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And for PB

[PB ,H1] = −iPB

[PB ,H2] = −2PQ

[PB ,H3] = −2(PI − PQ).

Commutators for theLi can be obtained as the complex con-
jugated of the corresponding ones for theHi. Finally, for the
dilatation operatorD (expressed in matrix representation by the
identity matrix), we have:

[Pi,D] = Pi, (A2)

with i = I, Q, A, B.
Once we have all the rules of the game we can begin to play

with expression (A1) and calculate its first term:

R1 = e−g3H3Peg3H3

(in what follows and for the sake of clarity we leave out the
dependences onτ of gi andji to recuperate them in the final
expressions). To this end we will need to calculate and add
afterwards all the terms of the form

e−g3H3Pie
g3H3 .

Each one of which is to be calculated using an equivalent of the
Baker–Hausdorff formula, which, for example forPI , affirms
that

e−g3H3PIeg3H3 = PI + g3 [PI ,H3]

+
1
2!

g2
3 [[PI ,H3] ,H3] + . . .

The result of these calculations is

e−g3H3PIeg3H3 = PI − g3PA,

e−g3H3PQeg3H3 = PQ − g3PA,

e−g3H3PAeg3H3 = PA,

e−g3H3PBeg3H3 = PB + 2g3(PI − PQ).

So one obtains

R1 = (jI + 2g3jB)PI + (jQ − 2g3jB)PQ +
(−jIg3 − jQg3 + jA)PA + jBPB =

= c10PI + c11PQ + c12PA + c13PB . (A3)

The meaning of the coefficientsc1i is self-evident. Next term is

R2 = e−g2H2R1eg2H2 .

Partial results involved are

e−g2H2PIeg2H2 = S0PI + S1PQ + S2PA + S3PB

e−g2H2PQeg2H2 = S0PQ − S1PI − S2PA + S3PB

e−g2H2PAeg2H2 = S0PA + S1PB + 2S2PI − 2S3PQ

e−g2H2PBeg2H2 = S0PB + S1PA + 2S2PQ − 2S3PI ,

where theS0, S1, S2, S3 are shortcuts for

S0 = cosh g2 · cos g2, (A4)

S1 = sinh g2 · sin g2, (A5)

S2 = −1
2
(cosh g2 · sin g2 + cos g2 · sinh g2), (A6)

S3 =
1
2
(cosh g2 · sin g2 − cos g2 · sinh g2). (A7)

The result forR2 is

R2 = (c10S0 − c11S1 + 2c12S2 − 2c13S3)PI +
(c10S1 + c11S0 − 2c12S3 + 2c13S2)PQ

+(c10S2 + c11S3 + c12S0 + c13S1)PA +
(c10S3 − c11S2 + c12S1 + c13S0)PB

= c20PI + c21PQ + c22PA + c23PB . (A8)

Next term is

R3 = e−g1H1R2eg1H1

and, by means of the following partial results:

e−g1H1PIeg1H1 = cos g1PI − i sin g1PQ

e−g1H1PQeg1H1 = cos g1PQ − i sin g1PI

e−g1H1PAeg1H1 = eig1PA

e−g1H1PBeg1H1 = e−ig1PB

one gets

R3 = (c20 cos g1 − ic21 sin g1)PI +
+(c21 cos g1 − ic20 sin g1)PQ +
+c22eig1PA + c23e−ig1PB =

= c30PI + c31PQ + c32PA + c33PB . (A9)

Now the process is to be repeated forLi to obtainR4,R5 andR6.
Being theLi the complex conjugated ofHi, every expression is
immediate just by using the corresponding complex conjugated
coefficients and by substituting the functionsg4, g5 andg6 for
g1, g2 andg3 respectively. We successively obtain

R4 = (c30 + 2g6c33)PI + (c31 − 2g6c33)PQ +
+(−c30g6 − c31g6 + c32)PA + c33PB

= c40PI + c41PQ + c42PA + c43PB , (A10)

and

R5 = = (c40T0 − c41T1 + 2c42T2 − 2c43T3)PI +
+(c40T1 + c41T0 − 2c42T3 + 2c43T2)PQ +
+(c40T2 + c41T3 + c42T0 + c43T1)PA +
+(c40T3 − c41T2 + c42T1 + c43T0)PB

= c50PI + c51PQ + c52PA + c53PB , (A11)

where

T0 = cosh g5 · cos g5, (A12)

T1 = sinh g5 · sin g5, (A13)

T2 = −1
2
(cosh g5 · sin g5 + cos g5 · sinh g5), (A14)

T3 =
1
2
(cosh g5 · sin g5 − cos g5 · sinh g5). (A15)
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The final result is

R6 = (c50 cos g4 + ic51 sin g4)PI +
+(c51 cos g4 + ic50 sin g4)PQ + c52e−ig4PA +
+c53eig4PB =

= c60PI + c61PQ + c62PA + c63PB . (A16)

And we are only left with the dilatation operator, for which
the operations are at this point almost immediate and give:(
O−1PO

)
= eg7 (c60PI + c61PQ + c62PA + c63PB) . (A17)

TheDi coefficients at Sect. 5, can straightforwardly be obtained
from this expression as

D0(τ) = eg7(τ)c60(τ)
D1(τ) = eg7(τ)c61(τ)

D2(τ) = eg7(τ) 1
2
(c62(τ) + c63(τ))

D3(τ) = eg7(τ) 1
2
i(c63(τ) − c62(τ)). (A18)
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