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Abstract. We present estimates of the amplitudes of intrinsi-
cally stable stochastically excited radial oscillations in stars near
the main sequence. The amplitudes are determined by the bal-
ance between acoustical energy generation by turbulent con-
vection (the Lighthill mechanism) and linear damping. Convec-
tion is treated with a time-dependent, nonlocal, mixing-length
model, which includes both convective heat flux and turbulent
pressure in both the equilibrium model and the pulsations. Ve-
locity and luminosity amplitudes are computed for stars with
masses between0.9 M� and2.0 M� in the vicinity of the main
sequence, for various metallicities and convection parameters.
As in previous studies, the amplitudes are found to increase with
stellar mass, and therefore with luminosity. Amongst those stars
that are pulsationally stable, the largest amplitudes are predicted
for a1.6 M� model of spectral type F2; the values are approx-
imately15 times larger than those measured in the Sun.
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1. Introduction

The stability of solar-like p modes depends mainly on the in-
teraction of the oscillations with radiation and convection in
the outer envelope. The most plausible explanations for the oc-
currence of such oscillations are either intrinsic thermal over-
stability or stochastic excitation of stable modes by turbulent
convection. Whatever the mechanism, the energy flow from ra-
diation and convection into and out of the p modes takes place
very near the surface (e.g. Goode et al. 1992). Sun-like stars pos-
sess surface convection zones, and it is in these zones, where the
energy is transported principally by the turbulence, that most of
the driving takes place. Mode stability is governed not only by
the perturbations in the radiative fluxes (via theκ-mechanism)
but also by the perturbations in the turbulent fluxes (heat and
momentum). The study of mode stability therefore demands a
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theory for convection that includes the interaction of the turbu-
lent velocity field with the pulsation.

Thermal overstability of pulsations arises from an exchange
of energy between the oscillatory motion of the stellar matter, the
turbulence and the radiation field. Such overstability has been
suggested as a possible mechanism for the excitation of solar
oscillations by Ulrich (1970a) and Antia et al. (1988). If solar p
modes were indeed overstable, some nonlinear mechanism must
limit their amplitudes to the values that are observed. Nonlinear
coupling to other, stable modes was considered by Kumar &
Goldreich (1989), who estimated that the energy drain through
three-mode coupling would occur at a rate too low to extract
the energy gained from the overstability at the appropriate am-
plitude. Similar estimates of nonlinear self limiting are also too
weak. The saturation of mode amplitudes at the observed levels
therefore remains a mystery if overstability provides the origin
of solar pulsations.

The problem of identifying a saturation mechanism does not
arise if the modes are intrinsically stable. Such modes can be
stochastically excited by the turbulent convection. The process
can be regarded as multipole acoustical radiation (e.g. Unno
1964). For solar-like stars, the acoustic noise generated by con-
vection in the star’s resonant cavity may be manifest as an en-
semble of p modes over a wide band in frequency (Goldre-
ich & Keeley 1977b). The amplitudes are determined by the
balance between the excitation and damping, and are expected
to be rather low. The turbulent-excitation model predicts not
only the right order of magnitude for the p-mode amplitudes
(Gough 1980), but it also explains the observation that millions
of modes are excited simultaneously. Moreover, recent observa-
tions (Toutain & Fr̈ohlich 1992, Goode & Strous 1996; Chaplin
et al. 1998) also support a stochastic origin. This second expla-
nation seems therefore to be the more likely, and is the one that
we shall adopt here.

To date, Christensen-Dalsgaard & Frandsen (1983b) have
made the only predictions of amplitudes of solar-like oscil-
lations in other stars. They obtained amplitudes of modes by
postulating equipartition between the energy of an oscillation
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mode and the kinetic energy in one convective eddy having the
same turnover time as the period of the oscillation. This sim-
ple formula for excitation was proposed by Goldreich & Keeley
(1977b), who used it to estimate amplitudes for the solar case,
assuming damping rates determined solely by a scalar turbu-
lent viscosity (Goldreich & Keeley 1977a). In the calculations
of Christensen-Dalsgaard & Frandsen (1983b), however, radial
eigenfunctions of model envelopes were computed by solving
the equations of linear nonadiabatic oscillation, although they
also neglected turbulent pressure and set the Lagrangian pertur-
bation to the convective heat flux to zero. They found velocity
and luminosity amplitudes to increase with age, and with in-
creasing mass along the main sequence.

Balmforth (1992a) improved the calculation by introducing
Gough’s (1976, 1977) nonlocal, time-dependent mixing-length
model for convection, using the Eddington approximation to
radiative transfer for both the equilibrium structure and the pul-
sations. He calculated damping rates for the solar case and found
all modes to be stable. Here we continue Balmforth’s investiga-
tion and study the oscillations of main-sequence stars, delimit-
ing the region in the HR diagram for stars with stable modes.
Preliminary results of the calculations have been presented by
Houdek et al. (1995).

According to Libbrecht et al. (1986) the observed oscilla-
tion properties of low-degree modes depend little on the value
of l. This is to be expected because the excitation and damping
mechanisms are significant only very close to the surface, where
the vertical scale is much less than the horizontal scale of oscil-
lations and whenl is low the modal inertia is quite insensitive
to degreel. It is therefore adequate to simplify the calculations,
by analysing only radial modes of oscillation. The results are
applicable to all modes of moderately low degree.

2. Observational projects

Observations of oscillation properties of stars other than the Sun
provide important information for testing the theory of stellar
evolution. A critical problem with the detection of oscillations
in solar-type stars, however, is their very small amplitudes, of
the order of1 m s−1 or less. For the Sun the observed velocity
variations in disc-integrated light have values<∼ 20 cm s−1 (e.g.
Grec et al. 1983; Libbrecht & Woodard 1991; Chaplin et al.
1998). To detect similar variations in distant stars is therefore
a challenging task, requiring observations to be made with the
utmost precision.

Three observing techniques for detecting such oscillations
have been developed so far. The first is to search for periodic
Doppler shifts of spectral lines (e.g. Kennelley 1995). How-
ever, the most successful result by this method has been the
determination of only an upper bound to oscillation amplitudes
in some of the brightest stars (e.g. Brown & Gilliland 1990;
Brown et al. 1991; Mosser et al. 1998). The second method is
to look for periodic brightness fluctuations using photometry.
When used with area detectors such as CCDs, this method has
a clear advantage over spectroscopic techniques because it per-
mits one to observe large ensembles of stars simultaneously (e.g.

Gilliland 1995). Using differential CCD photometry with seven
4m-class telescopes, Gilliland et al. (1993) obtained upper lim-
its of luminosity amplitudes of possible oscillations in twelve
stars inM67. The third method, introduced by Kjeldsen & Bed-
ding (1995), measures temperature fluctuations induced by stel-
lar oscillations via their effects on the equivalent width of the
Balmer lines (Bedding et al. 1996). This technique has yielded
a possible detection of solar-like oscillations in the sub-giant
η Boo (Kjeldsen et al. 1995). Although it is currently restricted
to observing isolated stars, the equivalent-width method is in-
sensitive to atmospheric scintillation, and attains a substantially
better signal-to-noise ratio than do the other two ground-based
methods.

The limitations of ground-based observational techniques in
asteroseismology have been addressed by Frandsen (1992) and
Gilliland (1995), both of whom argued that seismology can be
applied to distant solar-type stars only by observing them from
space. The elimination of atmospheric noise and the possibility
of obtaining long continuous data sequences will provide in-
formation of much higher quality than from any ground-based
method. Several asteroseismological space projects are in prepa-
ration, such as the French project COROT1 (Catala et al. 1995),
the Danish project MONS2 (Kjeldsen & Bedding 1998) and the
Canadian project MOST3 (Matthews 1998).

When preparing an observing campaign, it is helpful in the
selection of target stars to have a good prediction of the ampli-
tude of the signal one will be trying to observe. Measurements of
mode lifetimes (damping rates) and the variation of oscillation
amplitudes, which depend, in part, on stellar parameters, pro-
vide invaluable insights into the mechanisms that excite solar-
like oscillations. It is hoped that future observations will provide
these crucial measurements. The aim of this paper is to provide
a systematic survey of the oscillation properties in view of these
upcoming observational projects.

3. Time-dependent convection

In order to describe the turbulent fluxes in a time-dependent en-
velope, various phenomenological mixing-length models have
been proposed (for a detailed discussion see Balmforth 1992a;
Houdek 1996). In envelopes that do not pulsate, the various
guises of local mixing-length method are essentially similar,
once their intrinsic parameters have been calibrated (their for-
mulations may be interpreted as providing interpolation formu-
lae between the two limits of efficient and inefficient convection;
Gough & Weiss 1976). This is not so of formulations of time-
dependent mixing-length prescriptions, in which the details of
the phenomenological model influence the predictions of sta-
bility (Balmforth 1992a). Moreover, local theories are plagued
by some fundamental inconsistencies, which we shall describe
presently. For these reasons, we prefer to use a nonlocal version
(Gough 1976) which is summarized below.

1 COnvection and ROTation
2 Measuring Oscillations in Nearby Stars
3 Microvariability & Oscillations of STars
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3.1. Local mixing-length model

Local mixing-length models (e.g. B̈ohm-Vitense 1958; Ulrich
1970b; Gough 1977) still provide the almost universal method
for computing the stratification of convection zones in stellar
models. One of the major drawbacks of a local approach is
the assumption that the characteristic length scale` must be
shorter than any scale associated with the structure of the star.
This condition is certainly violated in solar-like stars and in red
giants, where calibrated evolution calculations yield a typical
value for the mixing-length parameterα = `/Hp that is of
order unity, whereHp is the pressure scale height. (Sinceα
is normally thought to be essentially invariable, it follows that
the condition must be thought to be violated in all stars.) This
implies that fluid properties vary significantly over the extent of
a convective element; the superadiabatic gradient can vary on a
scale much shorter thaǹ.

In many computations of stellar envelope models, the turbu-
lent pressurept associated with the Reynolds stresses has been
ignored. However, several investigations (Baker & Gough 1979;
Rosenthal et al. 1995; Canuto & Christensen-Dalsgaard 1998)
suggest that the momentum flux provides a substantial fraction
of the hydrostatic support in the equilibrium model, and should
therefore not be neglected. In a local model, inclusion of the
momentum fluxpt = ρw2 (ρ being the mean density andw the
rms vertical velocity of the convective elements) leads to sin-
gular points in the equation for the turbulent pressure gradient
at the edges of the convective regions (e.g. Gough 1976). This
issue demands careful consideration, although it can be circum-
vented by adopting an additional approximation to reduce the
order of the equations of hydrostatic support, which are then not
strictly consistent with the formulation of the theory (Henyey,
Vardya & Bodenheimer 1965; Baker & Gough 1979).

In a time-dependent description, the details of the phe-
nomenological model become important to the linear stabil-
ity calculation; the nonlocal model that we employ in our cal-
culations is one that is based on Gough’s (1965, 1977) local
mixing-length model. In that formulation, the turbulent eddies
that support the heat and momentum fluxes evolve in a pulsating
environment. Explicit consideration is given to the phase of pul-
sation at the birth of each transitorily coherent eddy, and to how
the eddy adjusts to the temporally varying environment. Other
mixing-length models (e.g. Unno 1967, Xiong 1989) empha-
size other aspects of the dynamics, which presumably influence
differently the pulsational stability (Balmforth 1992a).

Another major drawback of local theory is that it fails to treat
the convective dynamics across extended eddies in a physically
plausible fashion: in deeper parts of the convection zone, where
the stratification is almost adiabatic, convective heat transport
is very efficacious; radiative diffusion is unimportant, and the
perturbation of the heat flux is dominated by advection of tem-
perature fluctuations. In this limit, the temperature fluctuation
can be described approximately by a diffusion equation in which
the diffusivity is imaginary (Baker & Gough 1979; Gonczi &
Osaki 1980). Rapid spatial oscillations of the eigenfunctions
result. The problem this introduces can at best be thought of

as one of numerical resolution, which is particularly severe in
layers where the stratification is very close to being adiabatic.
But worse, it signifies a complete failure of the model, since the
wavelength of the spatial oscillation is very much smaller than
the mixing length (which is supposedly the smallest lengthscale
permitted by the model).

3.2. Nonlocal mixing-length model

The obvious drawbacks of a local formulation of the mixing-
length approach can be removed by an appropriate nonlocal
generalization. Account can be taken of the finite size of a con-
vective eddy by averaging spatially the representative value of
a physical variable throughout the eddy. Spiegel (1963), for ex-
ample, proposed a nonlocal description based on the concept of
an eddy phase space, and derived an equation for the convec-
tive flux which is similar to a radiative-transfer equation. The
solution of this transfer equation yields an integral expression
that converts the usual ordinary differential equations describ-
ing stellar models into integro-differential equations. The so-
lution to the transfer equation can be approximated by taking
moments, closing the hierarchy at second order with the Ed-
dington approximation (Gough 1976). In this approximation,
the nonlocal generalization of the mixing-length formulation is
governed by three second-order differential equations for the
spatially averaged convective fluxesFc andpt and for the av-
erage superadiabatic temperature gradient experienced by an
eddy.

The procedure introduces two more parameters,a and b,
which characterize respectively the spatial coherence of the en-
semble of eddies contributing to the total heat and momentum
fluxes, and the extent over which the turbulent eddies experience
an average of the local stratification. Theory suggests approx-
imate values for these parameters, but it is arguably better to
treat them as free. Roughly speaking, the parameters control
the degree of “nonlocality” of convection; low values imply
highly nonlocal solutions, and in the limita, b → ∞ the sys-
tem of equations reduces to the local formulation (except near
the boundaries of the convection zone, where the equations are
singular). Balmforth (1992a) investigated the effect of the pa-
rametersa andb on the turbulent fluxes in the solar case, and
Tooth & Gough (1989) tried to calibratea andb by comparing
theory with laboratory experiments.

4. Model computations

The basic model calculations reported in this paper are as de-
scribed by Balmforth (1992a). In particular, we incorporate tur-
bulent pressure in the equilibrium model envelope. The com-
putation proceeds by iteration, from a trial solution obtained by
integrating inwards from an optical depth ofτ = 10−4 and end-
ing at a radius fraction0.2, using local mixing-length theory and
the diffusion approximation to radiative transfer; the approxi-
mation to the turbulent pressure used by Baker & Gough (1979)
is adopted to obviate singular points at the edges of the con-
vection zones. The entire envelope is then re-integrated using
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the equations appropriate to the nonlocal mixing-length theory,
using the Eddington approximation to radiative transfer (Unno
& Spiegel 1966). The atmosphere is treated as being grey, and
is assumed to be plane parallel. The temperature gradient is cor-
rected by using aτ -dependent varying Eddington factor (Auer
& Mihalas 1970) derived from model C of Vernazza et al. (1981)
in the manner of Balmforth (1992a). Opacities were obtained
from the latest OPAL tables (Iglesias & Rogers 1996), supple-
mented at low temperature by tables from Kurucz (1991). Inter-
polation in these tables was carried out using birational splines
(Houdek & Rogl 1996). The equation of state included a detailed
treatment of the ionization of C, N, and O, and a treatment of
the first ionization of the next seven most abundant elements
(Christensen-Dalsgaard 1982), as well as ‘pressure ionization’
by the method of Eggleton, Faulkner & Flannery (1973); elec-
trons were treated with relativistic Fermi-Dirac statistics. In the
pulsation model the boundary conditions used are essentially
those of Baker & Kippenhahn (1965), but supplemented by ap-
propriate conditions on the variables of the nonlocal mixing-
length theory (Balmforth 1992a). The outer boundary condi-
tions were applied at the temperature minimum, the mechanical
condition being consistent with a perfectly reflecting surface; at
the base of the envelope, conditions of adiabaticity and vanish-
ing displacement were imposed.

The linearized pulsation equations were solved with a
second-order accuracy Newton-Raphson-Kantorovich algo-
rithm (Baker, Moore & Spiegel 1971; Gough, Spiegel & Toomre
1974). With this algorithm the eigenfunctions and eigenvalues
can be computed simultaneously; however, one has to provide
a proper trial solution. This can be obtained by solving first
the adiabatic pulsation equations and then applying a quasi-
adiabatic approximation4 to complete the nonadiabatic system.
The detailed equations describing the equilibrium and pulsation
model have been discussed by Balmforth (1992a) and Houdek
(1996).

5. Damping rates

Were solar p modes to be genuinely linear and stable, their
power spectrum could be described in terms of an ensemble
of intrinsically damped, stochastically driven, simple-harmonic
oscillators (Batchelor 1956; Christensen-Dalsgaard et al. 1989)
provided the background equilibrium state of the star is inde-
pendent of time; if we further assume that mode phase fluctua-
tions contribute negligibly to the width of the spectral lines, the
intrinsic damping rates of the modes could then be determined
observationally from measurements of the pulsation linewidths.
The linewidths are obtained, to a first approximation, by fitting
Lorentzian profile functions to the spectral peaks of the ob-
served power spectrum. Higher approximations demand a more
detailed description of the excitation and damping (cf. Jefferies
et al. 1988; Gabriel 1998). Continuous observations over many
periods are required. Observations from GONG (Harvey et al.
1996), and from the SOI-MDI (Scherrer et al. 1991), VIRGO

4 Quasi-adiabatic approximations adopt adiabatic eigenfunctions for
evaluating the thermal variables for computing mode stability.

(Fröhlich et al. 1995) and GOLF (Gabriel et al. 1991) instru-
ments aboard the SOHO spacecraft have already provided such
high-quality data for the Sun.

It should be noted that the observed power spectrum of so-
lar pulsations is complicated by the beating of closely spaced
modes (e.g. Christensen-Dalsgaard & Gough 1982; Hill et al.
1996) and by amplitude variations and phase wandering result-
ing from the interaction with the turbulent convection. These
effects might also be responsible for the observed asymmetries
in the p-mode line profiles. The study of how to disentangle the
manifestations of these phenomena from manifestations of the
intrinsic mode parameters is only in its infancy (Chang et al.
1997; Roxburgh & Vorontsov 1997; Gabriel 1998; Nigam et al.
1998; Rast & Bogdan 1998). It is important for analysing not
only the oscillations of the Sun, but the oscillations of any star
with a rich spectrum of frequencies.

5.1. Processes contributing to intrinsic linewidths

Basically, the damping of stellar oscillations arises from two
sources: processes influencing the momentum balance, and pro-
cesses influencing the thermal energy equation. Each of these
contributions can be divided further according to their physi-
cal origin, as illustrated in Fig. 1. A detailed discussion of the
processes has been given by Houdek (1996). Here we limit the
discussion to those that are modelled in our computations.

Nonadiabatic radiative processes can contribute to both the
driving and the damping of the pulsations. In solar-type stars
the zones of ionization lie well inside the regions of efficacious
convection, and the conventionalκ-mechanism provides only a
relatively small contribution to the driving. Radiative damping
in the atmosphere is not necessarily small, and requires a more
accurate treatment of radiative transfer than the diffusion ap-
proximation. Christensen-Dalsgaard & Frandsen (1983a) have
shown that the use of the grey Eddington approximation, when
applied correctly, does not introduce too large an error in the cal-
culation of the damping rates. Furthermore, they have demon-
strated that for stability calculations departures from radiative
equilibrium in the mean state must not be neglected: in the upper
boundary layer of the convection zone, where there is a tran-
sition from convective to radiative energy transport, radiative
equilibrium is no longer maintained. Thus the mean intensityJ
is not equal to the Planck functionB. In particular, by perturbing
the equations describing the radiation field in the Eddington ap-
proximation, one obtains (Christensen-Dalsgaard & Frandsen
1983a)

δ(
1
ρ
div F r) = 4πκ[δB − δJ +

δκ

κ
(B0 − J0)] , (1)

whereρ andκ denote the density and opacity, respectively, the
operatorδ denotes a Lagrangian perturbation, and the subscript
0 denotes an equilibrium quantity. The last term in Eq. (1) de-
scribes the departure from radiative equilibrium in the mean
state; it is not everywhere small, yet it has been ignored in most
stability calculations so far.
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linear damping rateη. They can be associated
with the effects arising from the momentum bal-
ance (ηdyn) and from the thermal energy bal-
ance (ηg). The contributionsηscatt andηleak are
in parentheses because they have not been taken
into account in the computations reported in this
paper. The influence of Reynolds stresses on so-
lar modes, contributing toηt, has been treated by
Goldreich & Keeley (1977a) in the manner of a
time-independent scalar turbulent viscosity. The
width of the line in the Fourier power spectrum
of the oscillations is influenced also by nonlin-
earities, both those coupling a mode to others
(Kumar & Goldreich, 1989) and those intrinsic
to the mode itself.

Vibrational stability is influenced further by the exchange
of energy between the pulsation and the turbulent velocity field.
The exchange arises either via the pulsationally perturbed con-
vective heat flux, or directly through dynamical effects of the
fluctuating Reynolds stresses. In fact, it is the modulation of the
turbulent fluxes by the pulsations that seems to be the predom-
inant mechanism responsible for the driving and damping of
solar-type acoustic modes.

Nonadiabatic processes attributed to the modulation of the
convective heat flux by the pulsation are accounted for by the
contributionηconv to the total damping rates (see Fig. 1). This
contribution is related to the way that convection modulates
large-scale temperature perturbations induced by the pulsa-
tions, which influences pulsational stability substantially. The
manner in which it does so, together with the conventional
κ-mechanism, is discussed by Balmforth (1992a). It appears
to have a significant destabilizing influence on the pulsations
(Balmforth & Gough 1990a).

It was first reported by Gough (1980) that the dynamical
effects arising from the turbulent momentum flux perturbations
δpt contribute significantly to the dampingηt. Detailed analyses
(Balmforth 1992a) reveal how damping is controlled largely by
the phase difference between the turbulent pressure perturbation
δpt and the density perturbationδρ. Turbulent pressure fluctu-
ations must not, therefore, be neglected in stability analyses of
solar-type p modes.

The results presented here were obtained from computations
including the physics describingηrad, ηconv andηt. The nonadi-
abatic contributionsηrad andηconv may be associated with the
thermodynamics of the gas, and accordingly we couple them
into ηg = ηrad + ηconv (see also Fig. 1).

5.2. Theoretical damping rates

Damping rates are computed as the imaginary partωi of the
complex eigenfrequencyω = ωr + iωi, obtained from solving
the fully nonadiabatic pulsation equations. Balmforth (1992a)
computed damping rates for the Sun, and reported that he found
all modes to be stable, with damping rates agreeing tolerably

Fig. 2. Linear damping ratesη for the Sun as function of frequency.
The values chosen for the convection parameters areα = 1.8 and
a2 = b2 = 600.

with observation for frequencies between2 mHz and4 mHz.
Below and above this frequency range the theoretical damping
rates are smaller than observations would suggest. Damping
arising from incoherent scatteringηscatt (Goldreich & Murray
1994, see Fig. 1), which may remove the discrepancy both at
low and at high frequencies, is not modelled in our calculations.

Fig. 2 displays the damping rates and their contributions
arising from the gas and turbulent pressure perturbations for
a solar envelope model. Damping is much augmented by the
turbulent pressure perturbationδpt; it is only at the highest fre-
quencies that the nonadiabatic contributionηg to damping of
solar p modes exceeds that from the turbulent pressureηt.

The total damping rateη (solid curve), plotted as a function
of cyclic frequencyν = ωr/2π, is characteristically flat at fre-
quencies near 2.8 mHz (see Fig. 2). This feature is also observed
in solar linewidth measurements (e.g. Libbrecht 1988, Appour-
chaux et al. 1998, Chaplin et al. 1998). At these frequencies
the net damping is reduced particularly by radiative processes
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Fig. 3. Damping rates for an evolving1 M� star as function of fre-
quency. The results are displayed for models with ages=(0, 2.49, 3.96,
4.55, 6.19, 7.00, 8.03, 9.02, 9.72) Gy. The thick curve indicates the
results for the present Sun. Valuesα = 1.8, a2 = b2 = 600 for the
convection parameters have been used.

Fig. 4. Damping rates for an evolving1.45 M� star as a function of
frequency. The results are depicted for models with ages=(0, 0.96, 1.38,
1.72, 2.00, 2.44) Gy. Valuesα = 2.0, a2 = 900, b2 = 2000 for the
convection parameters have been used.

in the upper superadiabatic boundary layer of the convection
zone, which are locally destabilizing.

The damping rates for an evolving1 M� star are depicted
in Fig. 3. Damping rates generally increase with increasing age,
particularly for low- and high-order modes. For modes of inter-
mediate order the flattening of the damping-rate curve becomes
more pronounced as the star evolves, and turns into a locally
concave function at about the solar age. The maximum value of
the superadiabatic temperature gradient of a1 M� star increases
by approximately24% along the main sequence, promoting the
depression in the damping rates.

A similar behaviour of the damping rates is obtained for
more massive stars, as indicated for the evolving1.45 M� star
depicted in Fig. 4. For these more massive stars, larger values
of the nonlocality parameters,a2 = 900 andb2 = 2000, were

Fig. 5. Damping rates for ZAMS models as functions of frequency.
The results are displayed for models withM=(0.95, 1.00, 1.05, 1.10,
1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 2.00)M�. For the convection
parameters the valuesα = 2.0, a2 = 900, b2 = 2000 have been used.

adopted. This selection ensured that all the radial modes were
stable, in line with our working hypothesis that stochastic ex-
citation underlies the appearance of solar-like oscillations (but
see Sect. 9). The depression in the damping rates is more pro-
nounced for these stars, even at the ZAMS. This trend may be
seen even more obviously in Fig. 5, where damping rates are
depicted for stars with increasing mass along the ZAMS.

The functional dependence ofη on stellar parameters was
determined approximately by Goldreich & Kumar (1991); they
derived an order-of-magnitude estimate for the damping rates
accounting roughly for the effects of radiative damping and con-
vective dynamics. The radial modes were treated in the poly-
tropic approximation to the outer layers and convection was de-
scribed by standard (unperturbed) local mixing-length theory
(Böhm-Vitense 1958). They obtained the expression

η ∼ L

c2
sIω

(ωr

ωc

)2
, (2)

whereL is the luminosity andcs denotes the adiabatic sound
speed at the photosphere (which we define at the level where
the temperature is equal to the effective temperature),Iω is the
mode inertia, andωc is the acoustical cut-off frequency in an
isothermal atmosphere (Lamb 1909),

ωc =
c

2Hp
, (3)

wherec denotes the sound speed. The inertia is usually defined
such that it represents the coefficient of proportionality between
the energy in the mode and the square of the velocity amplitude
of the associated disturbance in the surface layers of the star. The
surface of the star, however, commonly lies in a region where
the mode is evanescent, and in that caseIω is more usefully
regarded as a measure of evanescence, representing a property of
the eigenfunction above the upper turning point (Gough 1995).
For the case of a linear adiabatic mode of stellar oscillation,
which can be represented by an undamped harmonic oscillator,
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Fig. 6.Theoretical damping rates as functions of frequency for the Sun,
a 1.25 M� and a1.45 M� ZAMS star. The curves are the right-hand
side of expression (2) multiplied by the factor1/6, assuming adiabat-
ically (dashed curves) and nonadiabatically (solid curves) computed
mode inertiaIω. The symbols show the damping rates obtained di-
rectly from the corresponding pulsation calculations, in which were
solved the fully nonadiabatic linearized equations using the nonlocal,
time-dependent mixing-length model with the convection parameters
of Figs 4 and 5.

the mode inertiaIω can be defined in terms of the total (kinetic
+ potential) energyE and the mean-square value of its surface
velocityVs, i.e.,E = Iω V 2

s , and consequently

Iω =
1

ξ2(R?)

∫ M?

mb

|ξ(m, ωr)|2 dm . (4)

Heremb denotes the mass interior to the bottom boundary of the
envelope, andR? andM? represent respectively the radius and
the mass of the star. In practice, we normalize the eigenfunction
ξ(m, ωr) such that

ξ(R?)
R?

= 1 . (5)

In Fig. 6 we compare numerically computed damping rates
with estimates from expression (2) with the right-hand side mul-
tiplied (arbitrarily) by 1/6. The factor 1/6 can be obtained ap-
proximately by taking into account the adiabatic exponents (γ1
andγ3) in the derivation of expression (2), assuming a fully ion-
ized gas. For the mode inertiaIω (cf. Eq. 4) the calculations as-
sumed adiabatically (dashed curves) and nonadiabatically (solid
curves) computed displacement eigenfunctionsξ.

For frequencies below about half the isothermal acoustical
cut-off frequencyωc, the results suggest a fair agreement be-
tween analytical and modelled damping rates. An interesting
feature is the bend in the analytical solution obtained with both
the nonadiabatic and adiabatic eigenfunctions for the1.45 M�
star near the frequencyν ' 1.85 mHz. This property is obvi-
ously related to the shape of the eigenfunctions in the boundary
layers of the convection zone, because in a polytrope the mode
inertia Iω is a smooth function of height (Gough 1995). The
characteristic flattening of the damping rates (e.g., near 2.8 mHz

Fig. 7. Theoretical amplitude ratios for a solar model compared with
observations by Schrijver et al. (1991). Computed results are depicted
for velocity amplitudes obtained at different heights above the photo-
sphere (h = 0 km atT = Teff ) assuming the convection parameters
used for Figs 2 and 3. The thick, solid curve indicates a running-mean
average of the data.

for the Sun), however, is not seen in the estimates from expres-
sion (2).

6. Amplitude ratios

A useful test of the pulsation theory, independent of an excitation
model, is provided by comparing estimated intensity-velocity
amplitude ratios with observations. For the Sun, accurate irra-
diance measurements exist from the IPHIR instrument of the
PHOBOS 2 spacecraft with contemporaneous low-degree ve-
locity observations in the potassium line from the Birmingham
instrument at Tenerife (Schrijver et al. 1991). This allows us
to compare observed solar amplitude ratios with our estimated
ratios as function of frequency. The comparison is displayed in
Fig. 7, where the model results are depicted for velocity ampli-
tudes computed at different atmospheric levels. For moderate
and high eigenfrequencies the amplitude of the displacement
ξ increases quite steeply in the evanescent outer region of the
atmosphere, where the density declines very rapidly. The com-
puted velocity amplitude, and hence the ratio, varies by about
15 % between the photosphere and the temperature minimum.
Thus attention has to be paid to which atmospheric level the
velocity amplitudes are computed, i.e., at which level the dis-
placement eigenfunctions are normalized. Observations are per-
formed in selected Fraunhofer lines, e.g. in the neutral potassium
line (769.9 nm) as used in the BiSON observation (Elsworth
et al. 1993), which is formed at a height ofh ' 200 km above
the point where the temperature is equal to the effective tem-
perature (assuming theT -τ relation derived from the model C
atmosphere of Vernazza et al. 1981). The luminosity amplitudes
have been computed at the outermost gridpoint and a correction
factor has been applied to account for the conversion to the
measured irradiance wavelength ofλ = 500 nm using the ap-
proximation of Kjeldsen & Bedding (1995). Observations with
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a coherence greater than0.7 are represented by different sym-
bols denoting measurements of different degreel. The thick
solid curve represents a running-mean average, with a width of
300µHz, of the observational data. The theoretical ratios for
h = 200 km (dashed curve) show reasonable agreement with
the observations.

7. Acoustical noise generation rate

Acoustical radiation by turbulent multipole sources in the con-
text of stellar aerodynamics has been considered by Unno &
Kato (1962), Moore & Spiegel (1964), Unno (1964), Stein
(1967), Goldreich & Keeley (1977b), Osaki (1990), Balmforth
(1992b), Goldreich et al. (1994) and Musielak et al. (1994).

In a pulsating atmosphere the full pulsation-convection
equations must be derived from the fluid-dynamical equations in
which the fluid velocity includes both turbulence and pulsation.
Balmforth (1992b) reviewed the theory of acoustical excitation
in a pulsating atmosphere, and, following Goldreich & Kee-
ley (1977b), he derived the following expression for the rate of
energy injected into a mode with frequencyωr by quadrupole
emission through the fluctuating Reynolds stresses:

PQ =
π1/2

8Iωξ2(R?)

×
∫

M∗

(
∂ξ(m, ωr)

∂r

)2

ρ`30u
4
0τ0S(m, ωr) dm , (6)

where`0,u0,τ0 are respectively the length, velocity and corre-
lation time scales of the most energetic eddies, determined by
the mixing-length model. The functionS(m, ωr) accounts for
the turbulent spectrum, which approximately describes contri-
butions from eddies with different sizes to the noise generation
ratePQ, and which we implemented as did Balmforth (1992b):

S(m, ωr) =
∫ ∞

0

u3
κ

κ5 exp[−ω2
r τ2

0 /(2κuκ)2] dκ , (7)

whereκ = k/k0, uκ = u(k)/u0, k is the wavenumber of an
eddy with velocityu(k), andk0 is the wavenumber at the peak of
the spectrum. For the computation ofu(k), a turbulent spectrum
according to Spiegel (1962) has been chosen.

The emission of acoustical radiation by turbulent multi-
pole sources depends critically on the convective velocityu. In
homogeneous isotropic and non-decaying turbulence, acoustic
emission by the fluctuating Reynolds stresses (quadrupole emis-
sion) scales with the fifth power of the turbulent Mach number
Mt = u/c (Lighthill-Proudman formula). Inhomogeneity and
anisotropy effects in the overturning layers of stars give rise to
monopole and dipole emission manifested in the fluctuation of
the entropy (e.g. Goldreich & Kumar 1990). Stein & Nordlund
(1991) and Goldreich et al. (1994) suggest that the monopole
and dipole source may be as important as quadrupole radiation.
However, previous work has demonstrated that the prescription
is capable of roughly reproducing solar measurements, and so,
partly for want of a serious theory, we stick with the expressions
(6) and (7) here.

Fig. 8.Velocity amplitudes for the Sun as a function of frequency. The
computed values (continuous curve) are depicted at the photospheric
levelh = 200 km. The turbulent spectrumS(m, ωr), given by Eq. (7),
has been multiplied by the factor 6.55 to fit the maximum value of
the velocity data (filled circles) from the BiSON observations (Chaplin
et al. 1998). The data are from a 32-month almost continuous sequence
collected between May 1994 and January 1997, i.e., at or near the
solar-cycle 22/23 activity minimum. The computations assumed the
convection parametersα = 1.8, a2 = b2 = 300.

8. Amplitudes

8.1. Velocity amplitudes

With the computations of the damping rate,η, and noise gen-
eration rate,PQ, the root-mean-square velocity at a particular
level in the atmosphere may be written as

Vs =

√
PQ

2 η Iω
. (8)

The form of the turbulent spectrumS(m, ωr), given by Eq.
(7), has a substantial effect on the predicted mode amplitudes.
In this paper we multiplied the rhs of Eq. (7) by the factor 6.55
for all amplitude predictions. This empirical correction, which
can be attributed perhaps to uncertainties in our expressions
for the quadrupole emission, leads to theoretical solar velocity
amplitudes that have the same maximum value of 26.6 cm s−1

as that observed by the BiSON group (Chaplin et al. 1998).
The results of the scaled theoretical mean amplitude values for
a solar model are displayed in Fig. 8 together with the BiSON
data.

8.1.1. Main-sequence stars

The mean velocity as a function of frequency, computed at a
heighth = 200 km above the photosphere of an evolving1 M�
star, is displayed in Fig. 9. The oscillation amplitudes become
larger with age for low and intermediate frequencies, exhibiting
a maximum value ofVs ' 45 cm s−1 at the end of the hydrogen
core-burning phase. The increase comes about because the ratio
PQ/Iω increases with age at the frequency of maximum mode
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Fig. 9. Velocity amplitudes for an evolving1 M� star as function of
frequency, depicted at the photospheric levelh = 200 km. The results
are displayed for the model masses and convection parameters of Fig. 3.
The thick curve indicates the results for the Sun.

Fig. 10.Velocity amplitudes for an evolving1.45 M� star as function
of frequency, computed at a heighth = 200 km. The dashed curve
displays the result for the 2.44 Gy model applying a median filter on
the amplitudes with a width corresponding to nine radial modes. The
amplitudes are portrayed for the model ages and convection parameters
of Fig. 4.

energy, whereas the damping rates decrease with age at this
frequency (see Fig. 3).

In Fig. 10 the amplitudes are depicted for an evolving
1.45 M� star, also computed at the heighth = 200 km. For
models before the characteristic ‘hook’ (i.e., at ages<∼ 2.36 Gy)
in the evolutionary track (see Fig. 13) the amplitudes increase
only moderately with age, mainly because of the increasing
mode inertia at the frequency of maximum mode energy and
the consequent decrease of the ratioPQ/Iω. For models older
than∼ 2.36 Gy, the luminosity increases fairly rapidly, leading
to a steep increase in the turbulent Mach number and hence
in the noise generation ratePQ, and consequently mode am-
plitudes. Near the end of the hydrogen core-burning phase the
theory predicts maximum values of∼ 330 cm s−1 for the veloc-

Fig. 11. Luminosity amplitudes for ZAMS model as function of fre-
quency, displayed at the outermost meshpoint of the models. The com-
putations assumed the convection parameters and model masses of
Fig. 5.

ity amplitudes. In general these maximum values coincide with
the sharp depression in the damping rates (see Fig. 4).

8.2. Luminosity amplitudes

For radial modes, the imaginary part of the nonadiabatic dis-
placement eigenfunctions is very small relative to the real part.
The differences in the velocity amplitudes when using the adi-
abatic instead of the nonadiabatic displacement eigenfunctions
are negligible relative to the uncertainties inherent in modelling
the theory of stochastic excitation. For the estimation of the lu-
minosity amplitudes, however, nonadiabatic eigenfunctions of
the relative luminosity fluctuations,δL/L0, have to be taken into
account. The relative luminosity amplitudes are related linearly
to the velocity amplitudes.

8.2.1. Zero-age main-sequence stars

The luminosity amplitudes of moderate-mass stars along the
ZAMS are depicted in Fig. 11. The amplitudes increase mono-
tonically with M for stars withM ≤ 1.45 M�, up to a max-
imum value of∼ 50 ppm. For models withM >∼ 1.6 M�,
amplitudes of stochastically excited modes decrease withM ;
for a2 M� ZAMS star the maximum amplitude is∼ 0.06 ppm.
The dependence of the amplitude variations upon mass, or upon
luminosity, may be explained principally by the strong depen-
dence of the acoustic noise generation rate on the turbulent Mach
numberMt. The dependence of the maximum values of the tur-
bulent Mach numberMt and the ratio of turbulent pressure to
total pressurept/p upon model mass along the ZAMS is illus-
trated in Fig. 12. The computations predict the largest turbu-
lent Mach numbers for models with a mass of∼ 1.6 M�. The
2 M� ZAMS star exhibits two very thin convection zones in the
outer part of the envelope, and the theory predicts a maximum
turbulent Mach numberMt < 0.1. Furthermore, the opacity
and consequently the convective heat flux decrease withM for
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Fig. 12. Maximum values of turbulent Mach numberMt, turbulent
pressure fractionpt/p and convective growth rateσ = 2w/` as func-
tion of model mass along the ZAMS. The computations assumed the
convection parameters of Figs 4 and 5.

M >∼ 1.6 M�. Also indicated in Fig. 12 is the maximum value
of the convective growth rateσ = 2w/`, scaled in units of cyclic
frequencyν. The ratioσ/ν influences the shape of the eigen-
functions in such a way as to cause a local depression in the
damping ratesη considered as functions ofν (cf. Gough 1997).
The maximum value ofσ is roughly equal to the frequency of
the local minimum ofη.

8.3. Dependence on stellar parameters

For those models on the main sequence for which all the modes
are predicted to be stable, the computed maximum velocity am-
plitudes of stochastically excited modes (evaluated at the height
h = 200 km) are shown as contours on the HR diagram in
Fig. 13. The191 models (indicated by the diamond symbols)
were generated by specifying the mass, luminosity and effec-
tive temperature provided from full evolution sequences, as ob-
tained by Christensen-Dalsgaard (1993). The same convective
parameters as those in Figs 4 and 5 were adopted. For more
massive stars the maximum amplitudes exhibit peaks in their
frequency spectrum due to the sharp dip in their damping rates
(see Figs 4 and 10). We moderated these peaks by applying a
median filter to the amplitudes of all models with a width in
frequency corresponding to nine radial modes (as illustrated in
Fig. 10 by the dashed curve for a 1.45M� star with an age of
2.44 Gy).

The low-temperature extremities of the contours indicate
where the model hydrogen mass fractionsXc reach10−6 in the
core; no calculations were carried out at lower temperatures.
The amplitudes increase steeply with luminosity, particularly
for stars with massM >∼ 1.4 M�, owing to the increase in
the convective velocities withM . The largest amplitudes are
predicted for a 1.6M� model of spectral type F2, which has
a maximum velocity amplitude of∼ 15 times larger than that
found for the Sun. For this model the turbulent Mach number
is also predicted to be largest (see Fig. 12). For more massive

stars the computations predict overstable modes (see Sect. 9).
Amplitudes of such overstable modes are limited by nonlin-
ear processes and can therefore not be estimated with the lin-
ear computations adopted in this paper; their values could be
much larger than the amplitude values of the stable stochasti-
cally driven modes considered here.

For stars withL <∼ 2 L�, the velocity amplitudes of stochas-
tically excited modes depend strongly on the model luminosity
and are only weakly dependent on the effective temperature. The
same trend is also seen in Fig. 14 for the luminosity amplitudes
(top panel). In the lower panel of Fig. 14 the ratios between lumi-
nosity and velocity amplitudes,∆L/∆Vs, are displayed, where
the luminosity fluctuations,∆L, are computed at the outermost
meshpoint of the models. At the photospheric level (h = 0 km)
the amplitude ratios appear to be quite insensitive to luminosity,
and depend mainly on effective temperature.

Based on the model results of Christensen-Dalsgaard &
Frandsen (1983b), Kjeldsen & Bedding (1995) proposed a scal-
ing relationship for solar-type velocity amplitudes as a function
of parameters used in stellar-evolution theory. In particular, they
proposed the scaling law

V

V�
∼

( L/L�
M/M�

)s

, (9)

with s = 1, suggesting that the velocity amplitudes scale di-
rectly with the light-to-mass ratioL/M of the star. In Fig. 15 the
velocity amplitudes versus the light-to-mass ratio are displayed
at a heighth = 200 km above the photosphere for model calcu-
lations assuming the convection parameters of Fig. 4. There is a
fair agreement between the computed amplitudes (filled circles)
and Kjeldsen & Bedding’s proposed relation (dashed line) for
L/M <∼ 3. For higher values ofL/M the estimated amplitudes
are predicted to be larger than Kjeldsen & Bedding’s linear
relation, particularly for models with massesM/M� >∼ 1.4.
Moreover, for these models the computed amplitudes become
progressively more dependent on the model’s effective temper-
ature and less dependent onL/M as they evolve along their
evolutionary tracks (see also Fig. 13). Applying a linear poly-
nomial fit to the estimated amplitudes in Fig. 15 suggests for the
exponents in the scaling law (9) a value of1.29. At the photo-
spheric height the computations suggest a value ofs = 1.47.

We should point out, however, that the convective velocities
found in our models are large. As already indicated in Fig. 12, the
turbulent Mach numberMt becomes relatively large for mod-
els withM/M� >∼ 1.4. Relative to a local convection model,
the nonlocal formulation used here reduces the convective ve-
locities, although they still remain large. This reduction results
in part from the averaging of the superadiabatic temperature
gradient over the eddies, which spreads the influence of this
gradient’s sharp peak in the hydrogen ionization zone over a
larger region.

8.4. Dependence on mixing length and metallicity

The dependence of the luminosity amplitudes on mixing-length
parameterα and metallicityZ is illustrated in Fig. 16 over a
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Fig. 13.Unstable modes and mean velocity amplitudes of stochastically excited oscillations. Amplitudes, evaluated at a heighth=200 km are
depicted as contours (solid curves) labelled at the amplitude values 19, 27, 35, 45, 60, 80, 110, 150, 250, 350 cm s−1. The dotted curves are
evolutionary tracks. The Sun, indicated by its symbol�, exhibits a mean (rms) velocity of20.0 cm s−1. Calculations have been carried out till
the end of hydrogen core-burning, giving the low-temperature extremities of the contours. The location of the instability strips for then = 1
andn = 2 radial modes are indicated by solid and dashed straight lines, respectively.

range of effective temperature for models with constant lumi-
nosity. The dependence of the velocity amplitudes are illus-
trated in Fig. 17 for two evolving models with mass1.0M� and
1.3M�.

Increasing the mixing-length parameter results in an in-
crease of both the luminosity and velocity amplitudes (top pan-
els). This comes about because increasingα results in higher
convective velocitiesu and thus in a larger acoustic generation
ratePQ (see Eq. 8). Moreover, it appears that the amplitudes be-
come less dependent uponα with increasing luminosity, which
might be explained by the decrease in convective efficacy with
model mass.

A similar behaviour of the amplitudes is obtained when the
metallicity is increased (bottom panels in Figs 16 and 17). A
larger value for the heavy-element abundanceZ results in a
higher opacityκ and consequently in a larger convective heat
flux in the upper boundary layer of the convection zone. There-
fore the turbulent Mach numberMt becomes larger, and thus
also do the amplitudes.

9. Overstable modes

For stars with logTeff >∼ 3.85 lying more or less in theδ Scuti
instability strip, the model calculations predict modes to be over-
stable, irrespectively of adjustments to the convection parame-
tersa andb. Theδ Scuti stars are variables with spectral types
A and F in the lower part of the classical Cepheid instability
strip, which are in the very interesting evolutionary phase of
the main sequence near the end of central hydrogen burning.
It was first shown by Zhevakin (1953) and Cox & Whitney
(1958) that the excitation mechanism in Cepheids, which are
core-helium-burning radial pulsators having large amplitudes
of the fundamental mode (and in a few cases also the first over-
tone), is plausibly due to the opacity mechanism acting in the
HeII ionization zone (see also Baker & Kippenhahn 1962). The
same mechanism is believed to be responsible for the excitation
in δ Scuti stars (e.g. Dziembowski 1995 and references therein).
The oscillation spectra of manyδ Scuti stars, however, are far
more complex, involving both radial and nonradial modes with
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Fig. 14.Luminosity amplitudes (top) and amplitude ratios (bottom) as
function of effective temperature and model luminosity. The amplitude
ratios are displayed for velocities at two different atmospheric levels:
the thin curves denote the results ath = 0 km and the thick curves
at the heighth = 200 km. The luminosity amplitudes are computed
at the outermost meshpoint of the models. The computations assumed
model parameters as given in Fig. 4. The value for the Sun (3.4 ppm)
is indicated by its symbol.

low amplitudes, lying often in a narrow frequency range. This
complicates mode identification substantially (e.g. Mangeney
et al. 1991). The coolerδ Scuti stars have substantial outer con-
vection zones. Thus in these layers the pulsationally induced
fluctuations of the turbulent fluxes may become important for
the selection mechanism of modes with observable amplitudes.

The theoretically predicted ordern of unstable p modes in
sequences of evolving models ofδ Scuti stars are depicted by
different symbols in Fig. 13 (e.g. circles indicate the location
of models in the HR diagram for which the radial fundamen-
tal mode was found to be overstable). The models have only
a few excited modes lying in a narrow frequency interval, and
some of them display radial orders in a nonconsecutive sequence
(however, see also Houdek & Gough 1998; Michel et al. 1999).
Moreover, with increasing effective temperature the overstable
modes shift to higher frequencies. The blue edge of the insta-

Fig. 15. Velocity amplitudes as function of light-to-mass ratio for
stochastically excited oscillations in 191 models (filled circles) cal-
culated at a heighth=200 km above the photosphere with the same
convection parameters as for Fig. 4. The dashed curve indicates Kjeld-
sen & Bedding’s scaling law (9) withs = 1. The amplitudes are
displayed relative to the value found in the Sun.

bility domain is found to shift to higher effective temperatures
with increasing order; this result is consistent with previous
model calculations (e.g. Stellingwerf 1979, 1980; Dziembowski
1995) mainly because for these models convection is unimpor-
tant. Through the inclusion of the turbulent flux perturbations
in the stability analyses the computations predict well defined
red edges, a result which was previously reported by Baker &
Gough (1979) for RR Lyrae stars. In particular, the fluctuating
Reynolds stressδpt is found to be the decisive contributor to the
damping rates and thus for the return to stability at the red edge
for low-order modes inδ Scuti stars (Houdek 1997). Only with
the inclusion ofδpt in the computations are all modes found
to be stable for models with effective temperatures satisfying
logTeff <∼ 3.85.

10. Conclusion

It is evident that one of the greatest deficiencies in modelling
oscillations in stars with surface convection zones is the lack
of a proper theory of convection in a pulsating environment.
Although several attempts have been made in recent years to
address this problem (for a review, see Baker 1987) none of
the proposed prescriptions are anything more than phenomeno-
logical. Impressive progress has been made on hydrodynamical
simulations of convection, including also the interaction with
pulsations (e.g. Stein & Nordlund 1991; Bogdan et al. 1993;
Nordlund & Stein 1998; Stein & Nordlund 1998). In particular,
the work by Stein and Nordlund, including a realistic treatment
of the physics of the outer parts of the convection zone, has
confirmed the earlier conclusion that the solar oscillations are
likely to be intrinsically stable (e.g. Gough 1980; Kumar & Gol-
dreich 1989; Balmforth 1992a); also, the simulations yielded
estimates, similar to the observationally determined values, of



594 G. Houdek et al.: Amplitudes of stochastically excited oscillations

Fig. 16. Luminosity amplitudes (computed at outermost meshpoint)
versus effective temperature for models with constant luminosity. The
results are displayed for different mixing-length parametersα (top) and
metallicities (bottom). The computations assumed the nonlocal convec-
tion parameters of Fig 4. The line styles are as defined in Fig. 14.Top:
the thick curves display the results for models computed withα = 1.8
and the thin curves depict the amplitudes obtained withα = 2.0. In
both model sequences the value for the metallicityZ was chosen to be
0.02. Bottom:the thick curves depict the amplitudes from model cal-
culations usingZ = 0.04 and the thin curves forZ = 0.02, assuming
α = 2.0.

the energy input to the modes from the stochastic driving by
convection. However, such simulations are evidently extremely
time consuming and have so far been made in sufficient detail
only for solar parameters. Here we have estimated the pulsa-
tional properties of main-sequence stars over a broad range of
parameters, by means of a time-dependent non-local version of
mixing-length theory.

Perhaps the most important conclusion drawn from this sur-
vey is that, as in the case of the Sun, oscillations in solar-like
stars are intrinsically damped and stochastically driven by con-
vection. We note that the issue may still not be entirely settled,
however. In particular, Cheng & Xiong (1997) reported calcu-
lations using Xiong’s (1989) nonlocal formulation of mixing-
length theory which predict overstable solar oscillations. In fact,

Fig. 17.Velocity amplitudes for an evolving1.0M� and1.3M� star
versus the model’s effective temperature. The computations assumed
the nonlocal convection parameters of Fig. 4 and results are displayed
at a photospheric levelh = 200 km. Top: amplitudes are depicted for
three values of of the mixing-length parameterα assumingZ = 0.02
in the computations.Bottom: results are plotted for three values of
metallicityZ assumingα = 2.0 in the model calculations.

their computations suggest that the momentum flux perturba-
tions destabilize all p modes, in complete disagreement to the
results reported here. This discrepancy evidently deserves in-
vestigation.
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