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Abstract. We present estimates of the amplitudes of intrinsiheory for convection that includes the interaction of the turbu-
cally stable stochastically excited radial oscillations in stars ndant velocity field with the pulsation.

the main sequence. The amplitudes are determined by the bal-Thermal overstability of pulsations arises from an exchange
ance between acoustical energy generation by turbulent cofenergy between the oscillatory motion of the stellar matter, the
vection (the Lighthill mechanism) and linear damping. Convetdrbulence and the radiation field. Such overstability has been
tion is treated with a time-dependent, nonlocal, mixing-lengduggested as a possible mechanism for the excitation of solar
model, which includes both convective heat flux and turbuleoscillations by Ulrich (1970a) and Antia et al. (1988). If solar p
pressure in both the equilibrium model and the pulsations. \feodes were indeed overstable, some nonlinear mechanism must
locity and luminosity amplitudes are computed for stars witimit their amplitudes to the values that are observed. Nonlinear
masses between9 M, and2.0 My, in the vicinity of the main coupling to other, stable modes was considered by Kumar &
sequence, for various metallicities and convection parametesaldreich (1989), who estimated that the energy drain through
As in previous studies, the amplitudes are found to increase witinee-mode coupling would occur at a rate too low to extract
stellar mass, and therefore with luminosity. Amongst those sténg energy gained from the overstability at the appropriate am-
that are pulsationally stable, the largest amplitudes are predigpditide. Similar estimates of nonlinear self limiting are also too
for al.6 Mo model of spectral typeF; the values are approx-weak. The saturation of mode amplitudes at the observed levels
imately 15 times larger than those measured in the Sun. therefore remains a mystery if overstability provides the origin

of solar pulsations.

Key words: convection — turbulence — stars: oscillations The problem of identifying a saturation mechanism does not

arise if the modes are intrinsically stable. Such modes can be
stochastically excited by the turbulent convection. The process
can be regarded as multipole acoustical radiation (e.g. Unno

1. Introduction 1964). For solar-like stars, the acoustic noise generated by con-

The stability of solar-like p modes depends mainly on the in-
teraction of the oscillations with radiation and convection in
the outer envelope. The most plausible explanations for the
currence of such oscillations are either intrinsic thermal over
stability or stochastic excitation of stable modes by turbulen
convection. Whatever the mechanism, the energy flow from ra:
diation and convection into and out of the p modes takes pla@’%
very near the surface (e.g. Goode etal. 1992). Sun-like stars ROS:
sess surface convection zones, and itis in these zones, wherée
energy is transported principally by the turbulence, that most o
the driving takes place. Mode stability is governed not only b
the perturbations in the radiative fluxes (via th@echanism)
but also by the perturbations in the turbulent fluxes (heat and
momentum). The study of mode stability therefore demand§

vection in the star’s resonant cavity may be manifest as an en-
semble of p modes over a wide band in frequency (Goldre-
Ich & Keeley 1977b). The amplitudes are determined by the
B between the excitation and damping, and are expected
alance be ping, p
be rather low. The turbulent-excitation model predicts not
only the right order of magnitude for the p-mode amplitudes
ough 1980), but it also explains the observation that millions
of modes are excited simultaneously. Moreover, recent observa-
igns (Toutain & Fdhlich 1992, Goode & Strous 1996; Chaplin
E?’;\?. 1998) also support a stochastic origin. This second expla-
nation seems therefore to be the more likely, and is the one that

e

We shall adopt here.

To date, Christensen-Dalsgaard & Frandsen (1983b) have
made the only predictions of amplitudes of solar-like oscil-
afions in other stars. They obtained amplitudes of modes by
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postulating equipartition between the energy of an oscillation
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mode and the kinetic energy in one convective eddy having tBdliland 1995). Using differential CCD photometry with seven
same turnover time as the period of the oscillation. This simim-class telescopes, Gilliland et al. (1993) obtained upper lim-
ple formula for excitation was proposed by Goldreich & Keeleys of luminosity amplitudes of possible oscillations in twelve
(1977b), who used it to estimate amplitudes for the solar castgrs inM67. The third method, introduced by Kjeldsen & Bed-
assuming damping rates determined solely by a scalar turding (1995), measures temperature fluctuations induced by stel-
lent viscosity (Goldreich & Keeley 1977a). In the calculationr oscillations via their effects on the equivalent width of the
of Christensen-Dalsgaard & Frandsen (1983b), however, rads@imer lines (Bedding et al. 1996). This technique has yielded
eigenfunctions of model envelopes were computed by solviagpossible detection of solar-like oscillations in the sub-giant
the equations of linear nonadiabatic oscillation, although th@yBoo (Kjeldsen et al. 1995). Although it is currently restricted
also neglected turbulent pressure and set the Lagrangian pettucbserving isolated stars, the equivalent-width method is in-
bation to the convective heat flux to zero. They found velocigensitive to atmospheric scintillation, and attains a substantially
and luminosity amplitudes to increase with age, and with ibetter signal-to-noise ratio than do the other two ground-based
creasing mass along the main sequence. methods.

Balmforth (1992a) improved the calculation by introducing The limitations of ground-based observational techniquesin
Gough’s (1976, 1977) nonlocal, time-dependent mixing-lengésteroseismology have been addressed by Frandsen (1992) and
model for convection, using the Eddington approximation @illiland (1995), both of whom argued that seismology can be
radiative transfer for both the equilibrium structure and the pupplied to distant solar-type stars only by observing them from
sations. He calculated damping rates for the solar case and fogpdce. The elimination of atmospheric noise and the possibility
all modes to be stable. Here we continue Balmforth’s investigaf obtaining long continuous data sequences will provide in-
tion and study the oscillations of main-sequence stars, delinfidrmation of much higher quality than from any ground-based
ing the region in the HR diagram for stars with stable modasiethod. Several asteroseismological space projects are in prepa-
Preliminary results of the calculations have been presentedrhgion, such as the French project CORQ@CTatala et al. 1995),
Houdek et al. (1995). the Danish project MON&(Kjeldsen & Bedding 1998) and the

According to Libbrecht et al. (1986) the observed oscill&Sanadian project MOSI{Matthews 1998).
tion properties of low-degree modes depend little on the value When preparing an observing campaign, it is helpful in the
of [. This is to be expected because the excitation and dampssgection of target stars to have a good prediction of the ampli-
mechanisms are significant only very close to the surface, whaude of the signal one will be trying to observe. Measurements of
the vertical scale is much less than the horizontal scale of osailede lifetimes (damping rates) and the variation of oscillation
lations and wheii is low the modal inertia is quite insensitiveamplitudes, which depend, in part, on stellar parameters, pro-
to degred. Itis therefore adequate to simplify the calculationsjide invaluable insights into the mechanisms that excite solar-
by analysing only radial modes of oscillation. The results ali&e oscillations. Itis hoped that future observations will provide
applicable to all modes of moderately low degree. these crucial measurements. The aim of this paper is to provide

a systematic survey of the oscillation properties in view of these

. . upcoming observational projects.
2. Observational projects

Observations of oscillation properties of stars other than the Sun_, q q )
provide important information for testing the theory of stellap: 1'Me-dependent convection

evolution. A critical problem with the detection of oscillationsn order to describe the turbulent fluxes in a time-dependent en-
in solar-type stars, however, is their very small amplitudes, @élope, various phenomenological mixing-length models have
the order oft ms™" or less. For the Sun the observed velocityeen proposed (for a detailed discussion see Balmforth 1992a;
variations in disc-integrated light have valug@20cms ' (e.9. Houdek 1996). In envelopes that do not pulsate, the various
Grec et al. 1983; Libbrecht & Woodard 1991; Chaplin et ajuises of local mixing-length method are essentially similar,
1998). To detect similar variations in distant stars is therefog@ce their intrinsic parameters have been calibrated (their for-
a challenging task, requiring observations to be made with thgilations may be interpreted as providing interpolation formu-
utmost precision. lae between the two limits of efficient and inefficient convection;
Three observing techniques for detecting such oscillatiogG®ugh & Weiss 1976). This is not so of formulations of time-
have been developed so far. The first is to search for periodigpendent mixing-length prescriptions, in which the details of
Doppler shifts of spectral lines (e.g. Kennelley 1995). Howhe phenomenological model influence the predictions of sta-
ever, the most successful result by this method has been iy (Baimforth 1992a). Moreover, local theories are plagued
determination of only an upper bound to oscillation amplitudes; some fundamental inconsistencies, which we shall describe

in some of the brightest stars (e.g. Brown & Gilliland 199GQsresently. For these reasons, we prefer to use a nonlocal version
Brown et al. 1991; Mosser et al. 1998). The second method(@Sough 1976) which is summarized below.

to look for periodic brightness fluctuations using photometry.

When used with area detectors such as CCDs, this method hasconvection and ROTation

a clear advantage over spectroscopic techniques because it p&measuring Oscillations in Nearby Stars
mits one to observe large ensembles of stars simultaneously (e 3. Microvariability & Oscillations of STars
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3.1. Local mixing-length model as one of numerical resolution, which is particularly severe in
layers where the stratification is very close to being adiabatic.
<\)I;%&}Jt worse, it signifies a complete failure of the model, since the

X e ; . avelength of the spatial oscillation is very much smaller than
for computing the stratification of convection zones in stell e mixing length (which is supposedly the smallest lengthscale
models. One of the major drawbacks of a local approach | g'eng PP y g

the assumption that the characteristic length séateust be permitted by the model).

shorter than any scale associated with the structure of the star.

This condition is certainly violated in solar-like stars and in red.2. Nonlocal mixing-length model
giants, where calibrated evolution calculations yield a typic

Local mixing-length models (e.g.@m-Vitense 1958; Ulrich
1970b; Gough 1977) still provide the almost universal meth

o . "i‘he obvious drawbacks of a local formulation of the mixing-
value for_ the mmng-lgngth parameter = E/Hff that IS of length approach can be removed by an appropriate nonlocal
prder unity, whereff,, is the pressure sca!e he|ght. (Singe eneralization. Account can be taken of the finite size of a con-
IS norma!ly thought to be essentially 'F‘Va”ab'.ev it follows th ective eddy by averaging spatially the representative value of
j[he gondmon must be thought to 'be .v'|olated in all stars.) Th Sphysical variable throughout the eddy. Spiegel (1963), for ex-
implies that fluid properties vary significantly over the extent mple, proposed a nonlocal description based on the concept of

a convective element; the superadiabatic gradient can vary g aeddy phase space, and derived an equation for the convec-
scale much shorter than

I tati fstell | dels. the t btive flux which is similar to a radiative-transfer equation. The
h many computations ot stefiar envelope moaels, e Wrbd, iqn of this transfer equation yields an integral expression
lent pressure, associated with the Reynolds stresses has b

. d H li tigati Baker & Gouah 19 _Qlt converts the usual ordinary differential equations describ-
ignored. However, several investigations (Baker & Goug ing stellar models into integro-differential equations. The so-

Rosenthal et al. 1995; Canuto & Chn_stensen-DaIsga_lard 19 on to the transfer equation can be approximated by taking
suggest that the momentum flux provides a substantial fract %ments, closing the hierarchy at second order with the Ed-

of the hydrostatic support in the equilibrium merI, apd shou hgton approximation (Gough 1976). In this approximation,
thereforte nofT be n_egle(Q:tedt.) Ir_1 a:ﬁcal modgl, |n_(lflus;lc:jrt1hof tl?ﬁe nonlocal generalization of the mixing-length formulation is
momentum fiX, = pw (pbeing € mean density a € governed by three second-order differential equations for the
rms vertical velocity of the convective elements) leads to s@- atially averaged convective fluxés andp, and for the av

X .

gular points in the equation for the turbulent pressure gradi diabatic t t dient . db
at the edges of the convective regions (e.g. Gough 1976). T hsdge superadiabafic femperature gradient experienced by an

issue demands careful consideration, although it can be circum-, procedure introduces two more parameterand b,

vented by adopting an additional approximation to reduce tWﬁich characterize respectively the spatial coherence of the en-

order of the equations of hydrostatic support, which are then r%%tmble of eddies contributing to the total heat and momentum

\S/t ru(:jtly ?ES'Zten; V.V'th tq%é%r_n;mit'og %f ther;thlego?rg (Henye¥luxes, and the extent over which the turbulent eddies experience
arl ya i 0 gn em&ert d ' _at_er thouc? ail )f the ppan average of the local stratification. Theory suggests approx-
N a ime-gependent description, the detars of e Pigate values for these parameters, but it is arguably better to

nomenological model become important to the linear stab eat them as free. Roughly speaking, the parameters control

ity calculation; the nonlocal model that we employ in our cal he d p S . ;
. . . ; egree of “nonlocality” of convection; low values imply
culations is one that is based on Gough’s (1965, 1977) lo hly nonlocal solutions, and in the limit b — oo the sys-

mixing-length model. In that formulation, the turbulent edd'et%m of equations reduces to the local formulation (except near

that.support the he_a_t and mome’?t””.“ fques evolveina pulsaq 8 boundaries of the convection zone, where the equations are
environment. Explicit consideration is given to the phase of pyl-

. . . ingular). Balmforth (1992a) investigated the effect of the pa-
sation at the birth of each transitorily coherent eddy, and to h%’metersa andb on the turbulent fluxes in the solar case, and

the eddy adjusts to the temporally varying environment. Oth.? h h (1 . i )
mixing-length models (e.g. Unno 1967, Xiong 1989) emph ESOt & Gough (1989) tried to calibrateandb by comparing

size other aspects of the dynamics, which presumably influer?rggory with laboratory experiments.
differently the pulsational stability (Balmforth 1992a).

Another major drawback of local theory is that it fails to treat. Model computations
the convective dynamics across extended eddies in a physically i . N
plausible fashion: in deeper parts of the convection zone, wh e basic model calculations reportgd in this Paper are as de-
the stratification is almost adiabatic, convective heat transppfti2€d by Baimforth (1992a). In particular, we incorporate tur-
is very efficacious; radiative diffusion is unimportant, and thulent pressure in the equilibrium model envelope. The com-
perturbation of the heat flux is dominated by advection of terji!tation proceeds by iteration, from a trial solution obtained by
perature fluctuations. In this limit, the temperature fluctuatidfte9rating inwards from an optical depth-of= 10~ and end-

can be described approximately by a diffusion equation in whill}f @t @ radius fractiof.2, using local mixing-length theory and
the diffusivity is imaginary (Baker & Gough 1979; Gonczi &the diffusion approximation to radiative transfer; the approxi-

Osaki 1980). Rapid spatial oscillations of the eigenfunctiofiaation to the turbulent pressure used by Baker & Gough (1979)

result. The problem this introduces can at best be thought'2doPted to obviate singular points at the edges of the con-
vection zones. The entire envelope is then re-integrated using
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the equations appropriate to the nonlocal mixing-length theo(rohlich et al. 1995) and GOLF (Gabriel et al. 1991) instru-
using the Eddington approximation to radiative transfer (Unmoents aboard the SOHO spacecraft have already provided such
& Spiegel 1966). The atmosphere is treated as being grey, digh-quality data for the Sun.
is assumed to be plane parallel. The temperature gradient is cor-t should be noted that the observed power spectrum of so-
rected by using a-dependent varying Eddington factor (Auetar pulsations is complicated by the beating of closely spaced
& Mihalas 1970) derived from model C of Vernazza et al. (198hodes (e.g. Christensen-Dalsgaard & Gough 1982; Hill et al.
in the manner of Balmforth (1992a). Opacities were obtaind®96) and by amplitude variations and phase wandering result-
from the latest OPAL tables (Iglesias & Rogers 1996), supplierg from the interaction with the turbulent convection. These
mented at low temperature by tables from Kurucz (1991). Intesffects might also be responsible for the observed asymmetries
polation in these tables was carried out using birational splineshe p-mode line profiles. The study of how to disentangle the
(Houdek & Rogl 1996). The equation of state included a detaileshnifestations of these phenomena from manifestations of the
treatment of the ionization of C, N, and O, and a treatment ioftrinsic mode parameters is only in its infancy (Chang et al.
the first ionization of the next seven most abundant elemed®97; Roxburgh & Vorontsov 1997; Gabriel 1998; Nigam et al.
(Christensen-Dalsgaard 1982), as well as ‘pressure ionizatid998; Rast & Bogdan 1998). It is important for analysing not
by the method of Eggleton, Faulkner & Flannery (1973); eleonly the oscillations of the Sun, but the oscillations of any star
trons were treated with relativistic Fermi-Dirac statistics. In th&ith a rich spectrum of frequencies.
pulsation model the boundary conditions used are essentially
those. B Baker.& Kippenhahn (1.965)' but supplemented .bY 7. Processes contributing to intrinsic linewidths
propriate conditions on the variables of the nonlocal mixing-
length theory (Balmforth 1992a). The outer boundary condBasically, the damping of stellar oscillations arises from two
tions were applied at the temperature minimum, the mechanisalirces: processes influencing the momentum balance, and pro-
condition being consistent with a perfectly reflecting surface; e¢sses influencing the thermal energy equation. Each of these
the base of the envelope, conditions of adiabaticity and vanisiontributions can be divided further according to their physi-
ing displacement were imposed. cal origin, as illustrated in Fig. 1. A detailed discussion of the
The linearized pulsation equations were solved with grocesses has been given by Houdek (1996). Here we limit the
second-order accuracy Newton-Raphson-Kantorovich alghiscussion to those that are modelled in our computations.
rithm (Baker, Moore & Spiegel 1971; Gough, Spiegel & Toomre Nonadiabatic radiative processes can contribute to both the
1974). With this algorithm the eigenfunctions and eigenvaludsiving and the damping of the pulsations. In solar-type stars
can be computed simultaneously; however, one has to provitle zones of ionization lie well inside the regions of efficacious
a proper trial solution. This can be obtained by solving firsbnvection, and the conventionaimechanism provides only a
the adiabatic pulsation equations and then applying a quasiatively small contribution to the driving. Radiative damping
adiabatic approximati&rto complete the nonadiabatic systenin the atmosphere is not necessarily small, and requires a more
The detailed equations describing the equilibrium and pulsatiaacurate treatment of radiative transfer than the diffusion ap-
model have been discussed by Balmforth (1992a) and Hougekximation. Christensen-Dalsgaard & Frandsen (1983a) have

(1996). shown that the use of the grey Eddington approximation, when
applied correctly, does notintroduce too large an error in the cal-
5. Damping rates culation of the damping rates. Furthermore, they have demon-

strated that for stability calculations departures from radiative
Were solar p modes to be genuinely linear and stable, thgijuilibrium in the mean state must not be neglected: in the upper
power spectrum could be described in terms of an ensempiundary layer of the convection zone, where there is a tran-
of intrinsically damped, stochastically driven, simple-harmonigition from convective to radiative energy transport, radiative
oscillators (Batchelor 1956; Christensen-Dalsgaard et al. 198@ilibrium is no longer maintained. Thus the mean intensity
provided the background equilibrium state of the star is indg-not equal to the Planck functid In particular, by perturbing
pendent of time; if we further assume that mode phase fluctyge equations describing the radiation field in the Eddington ap-

tions contribute negligibly to the width of the spectral lines, thgroximation, one obtains (Christensen-Dalsgaard & Frandsen
intrinsic damping rates of the modes could then be determinggig3a)

observationally from measurements of the pulsation linewidths.

The linewidths are obtained, to a first approximation, by fitting | Sk
Lorentzian profile functions to the spectral peaks of the o (~div F;) = 4mk[0B — 6J +
served power spectrum. Higher approximations demand a more

detailed description of the excitation and damping (cf. Jeﬁeriﬁﬁ]erep andx denote the density and opacity,

et ""_"5988; Gabr?eldl988b). Con';inuo?s observations over Mgl 1615 denotes a Lagrangian perturbation, and the subscript
periods are required. Observations from GONG (Harvey et glyeqtes an equilibrium quantity. The last term in Eq. (1) de-

1996), and from the SOI-MDI (Scherrer et al. 1991), VIRGQyipes the departure from radiative equilibrium in the mean

4 Quasi-adiabatic approximations adopt adiabatic eigenfunctions ate; it is not everywhere small, yet it has been ignored in most
evaluating the thermal variables for computing mode stability. stability calculations so far.

(Bo — Jo)] , 1)

Y

respectively, the
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n= ndyn+ Fig. 1. Physical processes contributing to the

n
g
linear damping rate). They can be associated
with the effects arising from the momentum bal-
ance {ayn) and from the thermal energy bal-
ance (jz). The contributiongjscatt andmieax are
Ny n

( n ) ( n ) n in parentheses because they have not been taken

scatt leak t conv into account in the computations reported in this
incoherent transmissionof  modulation  radiative damping modulation of paper. The influence of Reynolds stresses on so-
scattering; prin- ~ waves intothe  of theturbu- dueto nonadiabatic  the turbulent lar modes, contributing tg;, has been treated by
cipaly at the atmosphere lent momen-  effects, eg. k-mech., heatflux & by  Goldreich & Keeley (1977a) in the manner of a
horizontally in-  (Bamforth & tumflux P departure from radia- the pulsation time-independent scalar turbulent viscosity. The
homogeneous ~ Gough, 1990b) by thepulsa-  tive equilibriumin  (Gough, 1977)  width of the line in the Fourier power spectrum
superadiabatic tion (Gough,  the mean state of the oscillations is influenced also by nonlin-
boundary layer 1977) (Christensen- earities, both those coupling a mode to others
(Goldreich & Dalsgaard & Frandsen, (Kumar & Goldreich, 1989) and those intrinsic
Murray, 1994) 1983s) to the mode itself.

Vibrational stability is influenced further by the exchange 8

of energy between the pulsation and the turbulent velocity field.
The exchange arises either via the pulsationally perturbed con- ¢
vective heat flux, or directly through dynamical effects of the
fluctuating Reynolds stresses. In fact, it is the modulation of the
turbulent fluxes by the pulsations that seems to be the predom- *
inant mechanism responsible for the driving and damping @f
solar-type acoustic modes. SIS

Nonadiabatic processes attributed to the modulation of the
convective heat flux by the pulsation are accounted for by the
contributionn.,, to the total damping rates (see Fig.1). This 0
contribution is related to the way that convection modulates
large-scale temperature perturbations induced by the pulsa-_,
tions, which influences pulsational stability substantially. The 1 5 3 4 5
manner in which it does so, together with the conventional v [mHz]

-mechanism, is di Balmforth (1992a). |
r-mechanism, is discussed by Baimforth (19922) tappeci’x_r.s 2. Linear damping rateg for the Sun as function of frequency.

to have a significant destabilizing influence on the puIsationgé values chosen for the convection parametersaare 1.8 and
(Balmforth & Gough 1990a). a® = b2 — 600. '
It was first reported by Gough (1980) that the dynamical
effects arising from the turbulent momentum flux perturbations
dp¢ contribute significantly to the dampimg. Detailed analyses
(Balmforth 1992a) reveal how damping is controlled largely by

the phase difference between the turbulent pressure perturbalidfi Observation for frequencies betwe2mHz and4 mHz.

5p; and the density perturbatiaip. Turbulent pressure fluctu- Below and above this frequency range the theoretical damping

ations must not, therefore, be neglected in stability analysed @S are smaller than observations would suggest. Damping
solar-type p modes. arising from incoherent scattering..;; (Goldreich & Murray

The results presented here were obtained from computatidio#: Se€ Fig. 1), which may remove the discrepancy both at
including the physics describing.q, 7cony andr;. The nonadi- low and at high frequencies, is not modelled in our calculations.
abatic contributions,, ands..,, may be associated with the _ Fi9- 2 displays the damping rates and their contributions

thermodynamics of the gas, and accordingly we couple théising from the gas and turbulent pressure perturbations for
iNto 77, = Mrad + 7 (see also Fig. 1) a solar envelope model. Damping is much augmented by the
g — !lra conv . .

turbulent pressure perturbatiop,; it is only at the highest fre-
) ) guencies that the nonadiabatic contributipnto damping of
5.2. Theoretical damping rates solar p modes exceeds that from the turbulent presgure

Damping rates are computed as the imaginary paaf the Thg total damping rate (sol_id curve), pl(_)tt_ed as a function
complex eigenfrequenay = w, -+ iw;, obtained from solving of cyclic frequency = w, /2, is characteristically flat at fre-

the fully nonadiabatic pulsation equations. Balmforth (19923yencies near 2.8 mHz (see Fig. 2). This feature is also observed

computed damping rates for the Sun, and reported that he foilhgolar linewidth measurements (e.g. Libbrecht 1988, Appour-

all modes to be stable, with damping rates agreeing tolera§fjaux €t al. 1998, Chaplin et al. 1998). At these frequencies

the net damping is reduced particularly by radiative processes
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Fig. 3. Damping rates for an evolvingy M, star as function of fre- Fig.5. Damping rates for ZAMS models as functions of frequency.
quency. The results are displayed for models with ages=(0, 2.49, 3.BBe results are displayed for models with=(0.95, 1.00, 1.05, 1.10,
455, 6.19, 7.00, 8.03, 9.02, 9.72) Gy. The thick curve indicates thel5, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 2.80). For the convection
results for the present Sun. Values= 1.8,a> = b? = 600 for the parameters the values= 2.0, a®> = 900, b> = 2000 have been used.
convection parameters have been used.

adopted. This selection ensured that all the radial modes were
stable, in line with our working hypothesis that stochastic ex-
citation underlies the appearance of solar-like oscillations (but
see Sect. 9). The depression in the damping rates is more pro-
nounced for these stars, even at the ZAMS. This trend may be
seen even more obviously in Fig. 5, where damping rates are
depicted for stars with increasing mass along the ZAMS.

The functional dependence gfon stellar parameters was
determined approximately by Goldreich & Kumar (1991); they
derived an order-of-magnitude estimate for the damping rates
accounting roughly for the effects of radiative damping and con-
vective dynamics. The radial modes were treated in the poly-

tropic approximation to the outer layers and convection was de-
s 1o 15 20 25 3, scribed by standard (unperturbed) local mixing-length theory
v [mHz] (Bbhm-Vitense 1958). They obtained the expression

10.0

1.0

n [uHz]

0.1

©
=

Fig. 4. Damping rates for an evolving.45 My star as a function of L (ﬂ)z )
frequency. The results are depicted for models with ages=(0, 0.96, 1.@8, 2l \w./ '’
1.72, 2.00, 2.44) Gy. Values = 2.0,a? = 900, b? = 2000 for the

convection parameters have been used where L is the luminosity and;;, denotes the adiabatic sound

speed at the photosphere (which we define at the level where
the temperature is equal to the effective temperatugeis the
in the upper superadiabatic boundary layer of the convectigfbde inertia, and, is the acoustical cut-off frequency in an
zone, which are locally destabilizing. isothermal atmosphere (Lamb 1909),
The damping rates for an evolvirigh/, star are depicted
in Fig. 3. Damping rates generally increase with increasing age, =
particularly for low- and high-order modes. For modes of inter-
mediate order the flattening of the damping-rate curve becomdserec denotes the sound speed. The inertia is usually defined
more pronounced as the star evolves, and turns into a localch that it represents the coefficient of proportionality between
concave function at about the solar age. The maximum valuetloé energy in the mode and the square of the velocity amplitude
the superadiabatic temperature gradientlolé, starincreases of the associated disturbance in the surface layers of the star. The
by approximately24% along the main sequence, promoting theurface of the star, however, commonly lies in a region where
depression in the damping rates. the mode is evanescent, and in that cAses more usefully
A similar behaviour of the damping rates is obtained faegarded as a measure of evanescence, representing a property of
more massive stars, as indicated for the evolinig M, star the eigenfunction above the upper turning point (Gough 1995).
depicted in Fig. 4. For these more massive stars, larger vallres the case of a linear adiabatic mode of stellar oscillation,
of the nonlocality parameterg? = 900 andb? = 2000, were which can be represented by an undamped harmonic oscillator,

C

ﬁ ) (3)
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Fig. 6. Theoretical damping rates as functions of frequency for the Sun, i . ) ,
a1.25 M, and al.45 M., ZAMS star. The curves are the right—hand:'g' 7. Theoretical amplitude ratios for a solar model compared with
side of expression (2) multiplied by the factof6, assuming adiabat- observations by Schrijver et al. (1991). Computed results are depicted

ically (dashed curves) and nonadiabatically (solid curves) compufi9f velocity amplitudes obtained at different heights above the photo-
mode inertial.,. The symbols show the damping rates obtained dfPhere & = 0km atT" = Teq) assuming the convection parameters
rectly from the corresponding pulsation calculations, in which weHsed for Figs 2 and 3. The thick, solid curve indicates a running-mean

solved the fully nonadiabatic linearized equations using the nonlocaYerage of the data.

time-dependent mixing-length model with the convection parameters

of Figs 4 and 5. for the Sun), however, is not seen in the estimates from expres-
sion (2).

the mode inertid,, can be defined in terms of the total (kinetic

+ potential) energy” and the mean-square value of its surfacg. Amplitude ratios

velocity V;, i.e., E = I, V.2, and consequently _ . o
Ausefultest of the pulsation theory, independent of an excitation

1 M, 9 model, is provided by comparing estimated intensity-velocity
lo= &(R,) / [€(m, wr)[=dm. (4) amplitude ratios with observations. For the Sun, accurate irra-
diance measurements exist from the IPHIR instrument of the
Herem,, denotes the mass interior to the bottom boundary OftWOBOS 2 Spacecraft with contemporaneous |OW_degree ve-
envelope, and?, and}, represent respectively the radius anghcity observations in the potassium line from the Birmingham
the mass of the star. In practice, we normalize the eigenfunctiggtrument at Tenerife (Schrijver et al. 1991). This allows us

mp

£(m,wy) such that to compare observed solar amplitude ratios with our estimated
¢(R,) ratios as function of frequency. The comparison is displayed in
T* =1. (5) Fig.7, where the model results are depicted for velocity ampli-

tudes computed at different atmospheric levels. For moderate
In Fig. 6 we compare numerically computed damping ratesid high eigenfrequencies the amplitude of the displacement
with estimates from expression (2) with the right-hand side my-increases quite steeply in the evanescent outer region of the
tiplied (arbitrarily) by 1/6. The factor 1/6 can be obtained amtmosphere, where the density declines very rapidly. The com-
proximately by taking into account the adiabatic exponents (puted velocity amplitude, and hence the ratio, varies by about
and~s) in the derivation of expression (2), assuming a fully iont5 % between the photosphere and the temperature minimum.
ized gas. For the mode inertig (cf. Eq. 4) the calculations as-Thus attention has to be paid to which atmospheric level the
sumed adiabatically (dashed curves) and nonadiabatically (sekdocity amplitudes are computed, i.e., at which level the dis-
curves) computed displacement eigenfunctions placement eigenfunctions are normalized. Observations are per-
For frequencies below about half the isothermal acoustidarmed in selected Fraunhofer lines, e.g. inthe neutral potassium
cut-off frequencyw., the results suggest a fair agreement béne (769.9 nm) as used in the BiSON observation (Elsworth
tween analytical and modelled damping rates. An interestiagal. 1993), which is formed at a height/of~ 200 km above
feature is the bend in the analytical solution obtained with bothe point where the temperature is equal to the effective tem-
the nonadiabatic and adiabatic eigenfunctions forltdé M. perature (assuming tHE-r relation derived from the model C
star near the frequenay ~ 1.85 mHz. This property is obvi- atmosphere of Vernazza etal. 1981). The luminosity amplitudes
ously related to the shape of the eigenfunctions in the boundagrve been computed at the outermost gridpoint and a correction
layers of the convection zone, because in a polytrope the mddetor has been applied to account for the conversion to the
inertia I, is a smooth function of height (Gough 1995). Theneasured irradiance wavelength)of= 500 nm using the ap-
characteristic flattening of the damping rates (e.g., near 2.8 mptpximation of Kjeldsen & Bedding (1995). Observations with
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a coherence greater thary are represented by different sym-
bols denoting measurements of different degre€he thick
solid curve represents a running-mean average, with a width of
300uHz, of the observational data. The theoretical ratios for
h = 200km (dashed curve) show reasonable agreement with
the observations. |

V, [em s

7. Acoustical noise generation rate

Acoustical radiation by turbulent multipole sources in the con-
text of stellar aerodynamics has been considered by Unno &
Kato (1962), Moore & Spiegel (1964), Unno (1964), Stein
(1967), Goldreich & Keeley (1977b), Osaki (1990), Balmforth 1
(1992b), Goldreich et al. (1994) and Musielak et al. (1994).

In a pulsating atmosphere the full pulsation-convection
equations must be derived from the fluid-dynamical equations in _ _ _
which the fluid velocity includes both turbulence and pulsatiofd- 8- Velocity amplitudes for the Sun as a function of frequency. The

Balmforth (1992b) reviewed the theory of acoustical excitati mputed values (continuous curve) are depicted at the photospheric
in a pulsating atmosphere, and, following Goldreich & Keec"s'? = 200km. The turbulent spectru(m, wr), given by Eq. (7),
P 9 P ! ’ 9 s been multiplied by the factor 6.55 to fit the maximum value of

ley (1977D), he derived the following expression for the rate ﬂfe velocity data (filled circles) from the BiSON observations (Chaplin

energy injected into a mode with frequency by quadrupole gt 5| 1998). The data are from a 32-month almost continuous sequence

emission through the fluctuating Reynolds stresses: collected between May 1994 and January 1997, i.e., at or near the
/2 solar-cycle 22/23 activity minimum. The computations assumed the
Py = = convection parameters = 1.8, a? = b% = 300.
81,&2(R,)
o&(m, 2 )
< [ (EUD) otuinssan. (@) 8 Ampitudes
M. 8.1. Velocity amplitudes

wherely,ug,7 are respectively the length, velocity and corregpith the computations of the damping ratg,and noise gen-

lation time scales of the most energetic eddies, determinedetmtion rate P, the root-mean-square velocity at a particular
the mixing-length model. The functiafi(m,w,) accounts for o alin the atmosphere may be written as

the turbulent spectrum, which approximately describes contri-

butions from eddies with different sizes to the noise generation Py
rate Pq, and which we implemented as did Balmforth (1992bys = ol (8)
oo 3
S(m,w;) = / % exp[—w?7Z [/ (2ku,)?] dk @) The form of the turbulent spectru(m, w,), given by Eq.
0

(7), has a substantial effect on the predicted mode amplitudes.

wherex = k/ko, u, = u(k)/uo, k is the wavenumber of an In this paper we multiplied the rhs of Eq. (7) by the factor 6.55
eddy with velocityu(k), andk, is the wavenumber at the peak ofor all amplitude predictions. This empirical correction, which
the spectrum. For the computationdf), a turbulent spectrum can be attributed perhaps to uncertainties in our expressions
according to Spiegel (1962) has been chosen. for the quadrupole emission, leads to theoretical solar velocity

The emission of acoustical radiation by turbulent multamplitudes that have the same maximum value of 26.6€ms
pole sources depends critically on the convective velacityhn  as that observed by the BiSON group (Chaplin et al. 1998).
homogeneous isotropic and non-decaying turbulence, acoustie results of the scaled theoretical mean amplitude values for
emission by the fluctuating Reynolds stresses (quadrupole eraisolar model are displayed in Fig. 8 together with the BiSON
sion) scales with the fifth power of the turbulent Mach numbelata.
M, = u/c (Lighthill-Proudman formula). Inhomogeneity and
anisotropy effect_s in the (_)ve.rturnmgl layers pf stars give rise éc.;l.l. Main-sequence stars
monopole and dipole emission manifested in the fluctuation 0
the entropy (e.g. Goldreich & Kumar 1990). Stein & Nordlund@he mean velocity as a function of frequency, computed at a
(1991) and Goldreich et al. (1994) suggest that the monopbleight, = 200 km above the photosphere of an evolving/,
and dipole source may be as important as quadrupole radiatistar, is displayed in Fig. 9. The oscillation amplitudes become
However, previous work has demonstrated that the prescriptlarger with age for low and intermediate frequencies, exhibiting
is capable of roughly reproducing solar measurements, andamaximum value oF; ~45cms ! at the end of the hydrogen
partly for want of a serious theory, we stick with the expressiorsre-burning phase. The increase comes about because the ratio
(6) and (7) here. Pq/1,, increases with age at the frequency of maximum mode
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Fig. 11. Luminosity amplitudes for ZAMS model as function of fre-

Fig. 9. Velocity amplitudes for an evolving M, star as function of . .
frequency, depicted at the photospheric Idver@Z()O km. The results 94€NCY: displayed at the outermost meshpoint of the models. The com-
' ' tions assumed the convection parameters and model masses of
5.

are displayed for the model masses and convection parameters of FiE.u\JS”.i
The thick curve indicates the results for the Sun. '9:

1 ity amplitudes. In general these maximum values coincide with
the sharp depression in the damping rates (see Fig. 4).

8.2. Luminosity amplitudes

100 For radial modes, the imaginary part of the nonadiabatic dis-

placement eigenfunctions is very small relative to the real part.
The differences in the velocity amplitudes when using the adi-
abatic instead of the nonadiabatic displacement eigenfunctions
are negligible relative to the uncertainties inherent in modelling
the theory of stochastic excitation. For the estimation of the lu-
minosity amplitudes, however, nonadiabatic eigenfunctions of
the relative luminosity fluctuation8/ Ly, have to be takeninto
account. The relative luminosity amplitudes are related linearly
to the velocity amplitudes.

Fig. 10.Velocity amplitudes for an evolving.45 M, star as function

of frequency, computed at a height= 200 km. The dashed curve )

displays the result for the 2.44 Gy model applying a median filter $h2.1. Zero-age main-sequence stars

the amplitudes with a width corresponding to nine radial modes. T
amplitudes are portrayed for the model ages and convection param
of Fig. 4.
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e luminosity amplitudes of moderate-mass stars along the
SRS are depicted in Fig. 11. The amplitudes increase mono-
tonically with M for stars withM < 1.45 My, up to a max-
imum value of~ 50 ppm. For models with\/ 2 1.6 My,
energy, whereas the damping rates decrease with age at dhiplitudes of stochastically excited modes decrease With
frequency (see Fig. 3). for a2 Ms ZAMS star the maximum amplitude is 0.06 ppm.

In Fig.10 the amplitudes are depicted for an evolvinhe dependence of the amplitude variations upon mass, or upon
1.45 My, star, also computed at the height= 200 km. For luminosity, may be explained principally by the strong depen-
models before the characteristic ‘hook’ (i.e., at ages 36 Gy) dence of the acoustic noise generation rate on the turbulent Mach
in the evolutionary track (see Fig. 13) the amplitudes increasemberl/;. The dependence of the maximum values of the tur-
only moderately with age, mainly because of the increasibglent Mach numbef/; and the ratio of turbulent pressure to
mode inertia at the frequency of maximum mode energy atatal pressure;/p upon model mass along the ZAMS is illus-
the consequent decrease of the rdtig/1,,. For models older trated in Fig.12. The computations predict the largest turbu-
than~ 2.36 Gy, the luminosity increases fairly rapidly, leadingent Mach numbers for models with a mass-ofl.6 M. The
to a steep increase in the turbulent Mach number and heRce, ZAMS star exhibits two very thin convection zones in the
in the noise generation rate,, and consequently mode am-outer part of the envelope, and the theory predicts a maximum
plitudes. Near the end of the hydrogen core-burning phase thebulent Mach numbeM; < 0.1. Furthermore, the opacity
theory predicts maximum values ©f330 cms'! for the veloc- and consequently the convective heat flux decreaseMifbr
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0.8

T Tty stars the computations predict overstable modes (see Sect. 9).

128 Amplitudes of such overstable modes are limited by nonlin-

] ear processes and can therefore not be estimated with the lin-

120 ear computations adopted in this paper; their values could be

1 much larger than the amplitude values of the stable stochasti-

1.5 cally driven modes considered here.

1 = For stars withl, < 2 L, the velocity amplitudes of stochas-

1.0 tically excited modes depend strongly on the model luminosity

1 and are only weakly dependent on the effective temperature. The

105 same trend is also seen in Fig. 14 for the luminosity amplitudes

1 (top panel). Inthe lower panel of Fig. 14 the ratios between lumi-

ool o o oo e d00 nosity and velocity amplituded ./ AV, are displayed, where

1.0 1.2 1.4 1.6 1.8 R.0 the luminosity fluctuations) L, are computed at the outermost
M/Mo meshpoint of the models. At the photospheric leve( 0 km)

Fig. 12. Maximum values of turbulent Mach numbar;, turbulent the amplitude ratios appear to be quite insensitive to luminosity,

pressure fractiop /p and convective growth raie = 2w/¢ as func- and depend mainly on effective temperature.

tion of model mass along the ZAMS. The computations assumed the Based on the model results of Christensen-Dalsgaard &

convection parameters of Figs 4 and 5. Frandsen (1983b), Kjeldsen & Bedding (1995) proposed a scal-

ing relationship for solar-type velocity amplitudes as a function

of parameters used in stellar-evolution theory. In particular, they

M 2 1.6 M. Also indicated in Fig. 12 is the maximum valueProposed the scaling law
of the convective growth rate = 2w/¢, scaled in units of cyclic y, L/Lo \*
frequencyv. The ratioo /v influences the shape of the eigens— ~ <M © ) ) )
functions in such a way as to cause a local depression in e /Mo
damping rateg considered as functions of(cf. Gough 1997). with s = 1, suggesting that the velocity amplitudes scale di-
The maximum value of is roughly equal to the frequency ofrectly with the light-to-mass ratid /M of the star. In Fig. 15 the
the local minimum of. velocity amplitudes versus the light-to-mass ratio are displayed
at a heights = 200 km above the photosphere for model calcu-
lations assuming the convection parameters of Fig. 4. There is a
fair agreement between the computed amplitudes (filled circles)
For those models on the main sequence for which all the mode®l Kjeldsen & Bedding’s proposed relation (dashed line) for
are predicted to be stable, the computed maximum velocity aiyM < 3. For higher values of /M the estimated amplitudes
plitudes of stochastically excited modes (evaluated at the height¢ predicted to be larger than Kjeldsen & Bedding’s linear
h = 200km) are shown as contours on the HR diagram ielation, particularly for models with masség¢/M, = 1.4.
Fig. 13. Thel91 models (indicated by the diamond symbolspMoreover, for these models the computed amplitudes become
were generated by specifying the mass, luminosity and effggegressively more dependent on the model’s effective temper-
tive temperature provided from full evolution sequences, as alttre and less dependent i) as they evolve along their
tained by Christensen-Dalsgaard (1993). The same convectvelutionary tracks (see also Fig. 13). Applying a linear poly-
parameters as those in Figs 4 and 5 were adopted. For mawenial fit to the estimated amplitudes in Fig. 15 suggests for the
massive stars the maximum amplitudes exhibit peaks in thekponent in the scaling law (9) a value df29. At the photo-
frequency spectrum due to the sharp dip in their damping ratgsheric height the computations suggest a value-ef1.47.
(see Figs 4 and 10). We moderated these peaks by applying awe should point out, however, that the convective velocities
median filter to the amplitudes of all models with a width ifioundin our models are large. As already indicated in Fig. 12, the
frequency corresponding to nine radial modes (as illustratectimbulent Mach numbe#/; becomes relatively large for mod-
Fig. 10 by the dashed curve for a 145, star with an age of els with M//My = 1.4. Relative to a local convection model,
2.44 Gy). the nonlocal formulation used here reduces the convective ve-
The low-temperature extremities of the contours indicalecities, although they still remain large. This reduction results
where the model hydrogen mass fractidfisreach10~¢ inthe in part from the averaging of the superadiabatic temperature
core; no calculations were carried out at lower temperaturgsadient over the eddies, which spreads the influence of this
The amplitudes increase steeply with luminosity, particularradient’s sharp peak in the hydrogen ionization zone over a
for stars with mass\/ = 1.4 M, owing to the increase in larger region.
the convective velocities witld/. The largest amplitudes are
predicted for a 1.8/, model of spectral type F2, which ha
a maximum velocity amplitude of 15 times larger than that
found for the Sun. For this model the turbulent Mach numb@&he dependence of the luminosity amplitudes on mixing-length
is also predicted to be largest (see Fig. 12). For more masgdarameteir and metallicity 7 is illustrated in Fig. 16 over a

8.3. Dependence on stellar parameters

3.4, Dependence on mixing length and metallicity
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Fig. 13. Unstable modes and mean velocity amplitudes of stochastically excited oscillations. Amplitudes, evaluated atha®@dmn are
depicted as contours (solid curves) labelled at the amplitude values 19, 27, 35, 45, 60, 80, 110, 150, 250, 350endotted curves are
evolutionary tracks. The Sun, indicated by its symbokxhibits a mean (rms) velocity @0.0 cms™*. Calculations have been carried out till
the end of hydrogen core-burning, giving the low-temperature extremities of the contours. The location of the instability strips ferithe
andn = 2 radial modes are indicated by solid and dashed straight lines, respectively.

range of effective temperature for models with constant lunf: Overstable modes

ity. Th f th loci li illus- . . . .
nosr[y_ c dependence o .t e velocity amp ltudes are i qur stars with lod.¢ = 3.85 lying more or less in thé Scuti
trated in Fig. 17 for two evolving models with mas§ M/, and . " : . .

L3M instability strip, the model calculations predict modes to be over-
e .§able, irrespectively of adjustments to the convection parame-

Increasing the mixing-length parameter results in an i . . X
o2 . X rsa andb. Thed Scuti stars are variables with spectral types
f both the | I I - . X o »
crease of both the luminosity and velocity amplitudes (top pa and F in the lower part of the classical Cepheid instability

Is). Thi m increasi Its in higher *_ : : . . .
els) s comes about because increasingsults ghe strip, which are in the very interesting evolutionary phase of

convective velocities and thus in a larger acoustic generatio[he main sequence near the end of central hvdrogen burnin
ratePq (see Eq. 8). Moreover, it appears that the amplitudes t?e- q yarog 9.

come less dependent uparwith increasing luminosity, which twas first shown by Zhevakin (1953) and Cox & Whitney

might be explained by the decrease in convective efficacy W&Jﬁ958) that the e?<°"a“°.” mechanism in C epheids, Wh'.Ch are
core-helium-burning radial pulsators having large amplitudes

model mass. ; ;
- . : . : of the fundamental mode (and in a few cases also the first over-
A similar behaviour of the amplitudes is obtained when the : : : . T
S I ne), is plausibly due to the opacity mechanism acting in the
metalicity is increased (bottom panels in Figs 16 and 17). ell ionization zone (see also Baker & Kippenhahn 1962). The
larger value for the heavy-element abundadtceesults in a T . P o
spme mechanism is believed to be responsible for the excitation

higher opacity: and consequently in a larger convective he In 0 Scuti stars (e.g. Dziembowski 1995 and references therein).

flux in the upper boundary layer of the convection zone. There: L ;
fore the turbulent Mach numbetr, becomes larger, and thus-?he oscillation spectra of manyScuti stars, however, are far

. more complex, involving both radial and nonradial modes with
also do the amplitudes.
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Fig. 15. Velocity amplitudes as function of light-to-mass ratio for
stochastically excited oscillations in 191 models (filled circles) cal-

1 culated at a height=200 km above the photosphere with the same
convection parameters as for Fig. 4. The dashed curve indicates Kjeld-
sen & Bedding’s scaling law (9) witk = 1. The amplitudes are
displayed relative to the value found in the Sun.

bility domain is found to shift to higher effective temperatures
with increasing order; this result is consistent with previous
model calculations (e.g. Stellingwerf 1979, 1980; Dziembowski
1995) mainly because for these models convection is unimpor-
o1l L tant. Through the inclusion of the turbulent flux perturbations
384 382 380 378 376 374 in the stability analyses the computations predict well defined
log(Turr) red edges, a result which was previously reported by Baker &

Gough (1979) for RR Lyrae stars. In particular, the fluctuating

eynolds stres&p, is found to be the decisive contributor to the

AL/AV, [ppm/cms™!]

Fig. 14.Luminosity amplitudes (top) and amplitude ratios (bottom)

function of effective temperature and model luminosity. The amplitu . o
ratios are displayed for velocities at two different atmospheric |eveff?‘mp'”9 rates and thus for the return to stability at the red edge

the thin curves denote the resultsiat= 0km and the thick curves 'OF low-order modes i Scuti stars (Houdek 1997). Only with
at the height: = 200 km. The luminosity amplitudes are computedhe inclusion ofép; in the computations are all modes found
at the outermost meshpoint of the models. The computations assuiite®€ stable for models with effective temperatures satisfying
model parameters as given in Fig. 4. The value for the Sun (3.4 pploQ T < 3.85.

is indicated by its symbol.

10. Conclusion

low amplitudes, lying often in a narrow frequency range. Thisis evident that one of the greatest deficiencies in modelling
complicates mode identification substantially (e.g. Mangenegcillations in stars with surface convection zones is the lack
etal. 1991). The coolerScuti stars have substantial outer coref a proper theory of convection in a pulsating environment.
vection zones. Thus in these layers the pulsationally induc&tthough several attempts have been made in recent years to
fluctuations of the turbulent fluxes may become important faddress this problem (for a review, see Baker 1987) none of
the selection mechanism of modes with observable amplitudée proposed prescriptions are anything more than phenomeno-
The theoretically predicted orderof unstable p modes in logical. Impressive progress has been made on hydrodynamical
sequences of evolving models ®Scuti stars are depicted bysimulations of convection, including also the interaction with
different symbols in Fig. 13 (e.g. circles indicate the locatiopulsations (e.g. Stein & Nordlund 1991; Bogdan et al. 1993;
of models in the HR diagram for which the radial fundamerNordlund & Stein 1998; Stein & Nordlund 1998). In particular,
tal mode was found to be overstable). The models have otie work by Stein and Nordlund, including a realistic treatment
a few excited modes lying in a narrow frequency interval, araf the physics of the outer parts of the convection zone, has
some of them display radial orders in anonconsecutive sequeocrfirmed the earlier conclusion that the solar oscillations are
(however, see also Houdek & Gough 1998; Michel et al. 199%kely to be intrinsically stable (e.g. Gough 1980; Kumar & Gol-
Moreover, with increasing effective temperature the overstaldleeich 1989; Balmforth 1992a); also, the simulations yielded
modes shift to higher frequencies. The blue edge of the inséstimates, similar to the observationally determined values, of
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Fig. 16. Luminosity amplitudes (computed at outermost meshpoirfg. 17. Velocity amplitudes for an evolving.0Mg and1.3M, star
versus effective temperature for models with constant luminosity. Thersus the model’s effective temperature. The computations assumed
results are displayed for different mixing-length parameidtsp) and the nonlocal convection parameters of Fig. 4 and results are displayed
metallicities (bottom). The computations assumed the nonlocal convata photospheric levél = 200 km. Top: amplitudes are depicted for
tion parameters of Fig 4. The line styles are as defined in Figidgt. three values of of the mixing-length parameteassumingZ = 0.02

the thick curves display the results for models computed with 1.8  in the computationsBottom: results are plotted for three values of
and the thin curves depict the amplitudes obtained with 2.0. In metallicity Z assumingx = 2.0 in the model calculations.

both model sequences the value for the metalligitwas chosen to be

0.02. Bottom:the thick curves depict the amplitudes from model cal- .
culations usingZ = 0.04 and the thin curves faf = 0.02, assuming their computations suggest that the momentum flux perturba-
a = 2.0. tions destabilize all p modes, in complete disagreement to the

results reported here. This discrepancy evidently deserves in-
vestigation.
the energy input to the modes from the stochastic driving by
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